精英家教网 > 高中数学 > 题目详情
3.已知偶函数y=f(x)对于任意的x∈[0,$\frac{π}{2}$)满足f′(x)cosx+f(x)sinx>0,(其中f′(x)是函数f(x)的导函数),则下列不等式中成立的是(  )
A.$\sqrt{2}$f(-$\frac{π}{3}$)<f($\frac{π}{4}$)B.$\sqrt{2}$f(-$\frac{π}{3}$)<f(-$\frac{π}{4}$)C.f(0)$>\sqrt{2}$f(-$\frac{π}{4}$)D.f($\frac{π}{4}$)$<\sqrt{3}$f($\frac{π}{3}$)

分析 构造函数,利用函数的导数,判断函数的单调性,然后推出结果.

解答 解:偶函数y=f(x)对于任意的x∈[0,$\frac{π}{2}$)满足f′(x)cosx+f(x)sinx>0,
构造函数F(x)=$\frac{f(x)}{cosx}$,
可得F′(x)=$\frac{f′(x)cosx+f(x)sinx}{co{s}^{2}x}$>0,
可知F(x)是增函数,F($\frac{π}{4}$)<F($\frac{π}{3}$).
可得:$\frac{f(\frac{π}{4})}{\frac{\sqrt{2}}{2}}<\frac{f(\frac{π}{3})}{\frac{1}{2}}$,
可得:f($\frac{π}{4}$)$<\sqrt{2}$f($\frac{π}{3}$)$<\sqrt{3}$f($\frac{π}{3}$).
故选:D.

点评 本题考查函数的导数的应用,考查构造法的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.给出下列四种说法:
①函数y=ax(a>0,且a≠1)与函数y=log1ax(a>0,且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=$\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$与y=$\frac{(1+{2}^{x})^{2}}{x•{2}^{x}}$均是奇函数;
④函数y=(x-1)2与y=2x-1在(0,+∞)上都是增函数.
其中正确说法的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=(a-2)x2+(a-1)x+3的图象关于y轴对称,则f(x)的增区间是(-∞,0]也可以填(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,则输出的a值为(  )
A.-3B.$\frac{1}{3}$C.-$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC的面积为S,且$\overrightarrow{BA}•\overrightarrow{CA}=S$.
(1)求tanA的值;
(2)若B=$\frac{π}{4},c=6$,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a∈R,函数f(x)=x3-ax2+ax+a,g(x)=f(x)+(a-3)x.
(1)求证:曲线y=f(x)在点(1,f(x))处的切线过定点;
(2)若g(1)是g(x)在区间(0,3]上的极大值,但不是最大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z=$\frac{3-4i}{2-i}$,$\overline z$是z的共轭复数,则$|{\overrightarrow{\overline z}}$|为(  )
A.$\frac{{5\sqrt{5}}}{3}$B.$\sqrt{5}$C.$\frac{{\sqrt{5}}}{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在某次物理实验中,得到一组不全相等的数据x1,x2,x3,…,xn,若a是这组数据的“代表”,必须使$\sum_{i=1}^{n}$(xi-a)2最小,则a的值是$\frac{1}{n}$$\sum_{i=1}^{n}$xi

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2001年底全县的绿化率已达30%.从2002年开始,每年将出现这样的局面,即现有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化.
(1)设全县面积为1,2001年底绿化面积为${a_1}=\frac{3}{10}$,经过n年绿化总面积达到an.求an和an+1的关系式子;
(2)至少经过多少年努力才能使全县的绿化率达到60%?(取lg2=0.30).

查看答案和解析>>

同步练习册答案