精英家教网 > 高中数学 > 题目详情
13.在△ABC中,$\frac{2sinA-sinB}{sinC}$=$\frac{cosB}{cosC}$.
(1)求C的值;
(2)若cosA=$\frac{3}{5}$,求sinB的值.

分析 (1)由$\frac{2sinA-sinB}{sinC}$=$\frac{cosB}{cosC}$,可得2sinAcosC-sinBcosC=sinCcosB,利用和与差的公式即可求解C角大小;
(2)利用三角形内角和定理和诱导公式化简,结合和与差公式即可得答案.

解答 解:(1)由$\frac{2sinA-sinB}{sinC}$=$\frac{cosB}{cosC}$,
可得2sinAcosC-sinBcosC=sinCcosB,即2sinAcosC=sinCcosB+sinBcosC
可得2sinAcosC=sinA,
∵0<A<π,sinA≠0,
∴2cosC=1,
cosC=$\frac{1}{2}$,
∵0<C<π,
∴C=$\frac{π}{3}$.
(2)∵cosA=$\frac{3}{5}$,0<A<π
∴sinA=$\frac{4}{5}$,
由(1)可得sinC=$\frac{\sqrt{3}}{2}$,cosC=$\frac{1}{2}$
那么:sinB=sin[π-(A+C)]=sin(A+C)=sinAcosC+sinCcosA=$\frac{4+3\sqrt{3}}{10}$

点评 本题主要考查了和与差的公式的运用和计算能力.属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,a1=3,并且Sn=2nan+1-3n2-4n,n∈N*,.
(1)求a2,a3,a4的值;
(2)归纳出数列{an}的通项公式并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x2-kx-2在区间(1,5)上既没有最大值也没有最小值,则实数k的取值范围是(  )
A.[10,+∞)B.(-∞,2]C.(-∞,2]∪[10,+∞)D.(-∞,1]∪[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设等比数列{an}满足a1+a3=20,a2+a4=10,则a1a2a3..an的最大值为210

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求过点(5,0)且与圆(x-1)2+(y-3)2=16相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$,则f(x)最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设△ABC的内角A,B,C所对的边分别是a,b,c,设向量$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(sinB,sinA),若$\overrightarrow{m}$∥$\overrightarrow{n}$,则△ABC为(  )
A.直角三角形B.锐角三角形C.等腰三角形D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在扇形AOB中,∠AOB=$\frac{5π}{6}$,C在弧AB上,且$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,则x与y满足关系式(  )
A.x2-$\sqrt{3}$xy+y2=1B.x2-xy+y2=1C.x2+y2=1D.x2+xy+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若$sin(x+\frac{π}{6})=\frac{1}{3}$,则$sin(\frac{5π}{6}-x)-{sin^2}(\frac{π}{3}-x)$的值为$-\frac{5}{9}$.

查看答案和解析>>

同步练习册答案