| A. | x2-$\sqrt{3}$xy+y2=1 | B. | x2-xy+y2=1 | C. | x2+y2=1 | D. | x2+xy+y2=1 |
分析 建立如图所示的直角坐标系,不妨设r=1.A(1,0),B$(-\frac{\sqrt{3}}{2},\frac{1}{2})$.设C(m,n),$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,可得$\left\{\begin{array}{l}{m=x-\frac{\sqrt{3}}{2}y}\\{n=\frac{1}{2}y}\end{array}\right.$,即可得出.
解答 解:建立如图所示的直角坐标系,![]()
不妨设r=1.
A(1,0),B$(-\frac{\sqrt{3}}{2},\frac{1}{2})$.
设C(m,n),$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,则$\left\{\begin{array}{l}{m=x-\frac{\sqrt{3}}{2}y}\\{n=\frac{1}{2}y}\end{array}\right.$,
则m2+n2=$(x-\frac{\sqrt{3}}{2}y)^{2}$+$(\frac{1}{2}y)^{2}$=1,
化为:x2-$\sqrt{3}$xy+y2=1.
故选:A.
点评 本题考查了平面向量基本定理、圆的方程,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{4}$) | B. | (2,+∞) | C. | (-2,$\frac{1}{4}$) | D. | (-∞,2)∪($\frac{1}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5或-3 | B. | 2或6 | C. | 5或3 | D. | $\sqrt{5}$或$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com