精英家教网 > 高中数学 > 题目详情
8.已知命题p:存在x0>0,使2${\;}^{{x}_{0}}$<1,则¬p是(  )
A.对任意x>0,都有2x≥1B.对任意x≤0,都有2x<1
C.存在x0>0,使2${\;}^{{x}_{0}}$≥1D.存在x0≤0,使2${\;}^{{x}_{0}}$<1

分析 由全称命题和特称命题的关系和否定规律可得.

解答 解:∵命题p:存在x0>0,使2${\;}^{{x}_{0}}$<1为特称命题,
∴¬p为全称命题,即对任意x>0,都有2x≥1.
故选:A

点评 本题考查含量词命题的否定,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移$\frac{π}{2}$个单位,沿y轴向下平移1个单位,得到函数y=sin$\frac{1}{2}$x的图象,则y=f(x)是(  )
A.y=sin(x+$\frac{π}{2}$)+1B.y=sin(x-$\frac{π}{2}$)+1C.y=sin(x+$\frac{π}{4}$)+1D.y=sin(x-$\frac{π}{4}$)+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法错误的是(  )
A.若a,b∈R,且a+b>4,则a,b至少有一个大于2
B.“?x0∈R,${2^{x_0}}=1$”的否定是“?x∈R,2x≠1”
C.a>1,b>1是ab>1的必要条件
D.△ABC中,A是最大角,则sin2A>sin2B+sin2C是△ABC为钝角三角形的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.关于x的不等式$\frac{x+1}{3-x}<0$的解集(  )
A.(-∞,-1)B.(-∞,-1)∪(3,+∞)C.(-1,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:
(1)$\sqrt{{x^2}-6x+9}$-|4-x|(x<3);
(2)log2(47×25)+log26-log23;
(3)${0.0081^{\frac{1}{4}}}+{({4^{-\frac{3}{4}}})^2}+{(\sqrt{8})^{-\frac{4}{3}}}-{16^{-0.75}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,已知sinA:sinB:sinC=6:8:13,则△ABC是(  )
A.钝角三角形B.锐角三角形C.直角三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别是a,b,c,已知$c=\sqrt{6},C=\frac{2π}{3}$.
(Ⅰ)若$a=\sqrt{2}$,求b;
(Ⅱ)若sinB=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={-2,-1,0,1},N={x|1≤2x≤4,x∈Z},则M∩N=(  )
A.{-2,-1,0,1,2}B.{0,1}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.以椭圆$\frac{x^2}{4}+{y^2}$=1的焦点为顶点,长轴顶点为焦点的双曲线的渐近线方程是y=±$\frac{\sqrt{3}}{3}$x,离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案