精英家教网 > 高中数学 > 题目详情
20.在△ABC中,角A,B,C所对的边分别是a,b,c,已知$c=\sqrt{6},C=\frac{2π}{3}$.
(Ⅰ)若$a=\sqrt{2}$,求b;
(Ⅱ)若sinB=2sinA,求△ABC的面积.

分析 (I)使用余弦定理列方程解出b;
(II)由sinB=2sinA得b=2a,代入余弦定理公式求出a,继而得出b,由面积公式S=$\frac{1}{2}absinC$求出面积.

解答 解:(Ⅰ)△ABC中,由余弦定理得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,即$cos\frac{2}{3}π=\frac{{{{(\sqrt{2})}^2}+{b^2}-{{(\sqrt{6})}^2}}}{{2•\sqrt{2}•b}}$=-$\frac{1}{2}$,
解得$b=-2\sqrt{2}$(舍去)或$b=\sqrt{2}$.
∴$b=\sqrt{2}$.
(Ⅱ)∵sinB=2sinA,∴b=2a,
又$cos\frac{2}{3}π=\frac{{{a^2}+{b^2}-{{(\sqrt{6})}^2}}}{2•a•b}$=-$\frac{1}{2}$,
∴$\frac{{{a^2}+4{a^2}-{{(\sqrt{6})}^2}}}{{4{a^2}}}=-\frac{1}{2}$,
解得${a^2}=\frac{6}{7}$.∴a=$\frac{\sqrt{6}}{\sqrt{7}}$,b=$\frac{2\sqrt{6}}{\sqrt{7}}$.
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×\frac{\sqrt{6}}{\sqrt{7}}×\frac{2\sqrt{6}}{\sqrt{7}}×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{7}$.

点评 本题考查了正弦定理,余弦定理解三角形,三角形的面积公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设0<a<1,0<b<1,曲线C1:y=ex+$\sqrt{a}$,C2:y=x+1+b,则曲线C1与C2有交点的概率是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线l与双曲线C:x2-$\frac{{y}^{2}}{4}$=1交于A,B两点,且线段AB的中点为(2,1),则直线l的方程是y=8x-15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p:存在x0>0,使2${\;}^{{x}_{0}}$<1,则¬p是(  )
A.对任意x>0,都有2x≥1B.对任意x≤0,都有2x<1
C.存在x0>0,使2${\;}^{{x}_{0}}$≥1D.存在x0≤0,使2${\;}^{{x}_{0}}$<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若无穷等差数列{an}的公差为d,则{an}有有限个负数项的条件是(  )
A.a1>0,d>0B.a1>0,d<0C.a1<0,d>0D.a1<0,d<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.箱子中有形状、大小都相同的3只红球和2只白球,一次摸出2只球,则摸到的2球颜色不同的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.元宵节晚上有三支龙灯表演队,甲、乙两位志愿者各自参加其中一支表演队,每一位志愿者参加各支表演队的可能性相同,则这两位志愿者参加同一支表演队的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$|\overrightarrow a|=2\;,\;|\overrightarrow b|=3$,$\overrightarrow a$与$\overrightarrow b$的夹角为120°.
(Ⅰ)求$({2\overrightarrow a-\overrightarrow b})•({\overrightarrow a+3\overrightarrow b})$的值;
(Ⅱ)当实数x为何值时,$x\overrightarrow a-\overrightarrow b$与$\overrightarrow a+3\overrightarrow b$垂直?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)是定义在[a,b]上的函数,如果存在常数M>0,对区间[a,b]的任意划分:a=x0<x1<…<xn-1<xn=b,和式$\sum_{i=1}^{n}$|f(xi)-f(xi-1)|≤M恒成立,则称f(x)为[a,b]上的“绝对差有界函数”,注:$\sum_{i=1}^{n}$ai=a1+a2+…+an
(1)证明函数f(x)=sinx+cosx在[-$\frac{π}{2},0$]上是“绝对差有界函数”;
(2)记集合A={f(x)|存在常数k>0,对任意的x1,x2∈[a,b],有|f(x1)-f(x2)|≤k|x1-x2|成立},证明集合A中的任意函数f(x)均为“绝对差有届函数”;当[a,b]=[1,2]时,判断g(x)=$\sqrt{x}$是否在集合A中,如果在,请证明并求k的最小值,如果不在,请说明理由;
(3)证明函数f(x)=$\left\{\begin{array}{l}{xcos\frac{π}{2x}}&{0<x≤1}\\{0}&{x=0}\end{array}\right.$不是[0,1]上的“绝对差有界函数.

查看答案和解析>>

同步练习册答案