精英家教网 > 高中数学 > 题目详情
1.已知tanα=-$\frac{5}{12}$,且α为第二象限角,则cosα的值等于-$\frac{12}{13}$.

分析 由α为第二象限角,可得cosα<0,由cosα=-$\sqrt{\frac{1}{1+ta{n}^{2}α}}$即可得解.

解答 解:∵tanα=-$\frac{5}{12}$,且α为第二象限角,
∴cosα=-$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=-$\sqrt{\frac{1}{1+\frac{25}{144}}}$=-$\frac{12}{13}$.
故答案为:-$\frac{12}{13}$.

点评 本题主要考查了同角三角函数关系式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知点P是椭圆$\frac{x^2}{13}+\frac{y^2}{5}=1$(x≠0,y≠0)上的动点,F1,F2为椭圆的两个焦点,O是坐标原点,若M是以线段PF1为直径的圆上一点,且M到∠F1PF2两边的距离相等,则$|{\overrightarrow{{O}{M}}}|$的取值范围是(  )
A.(0,$\sqrt{5}$)B.(0,2$\sqrt{2}$)C.[$\sqrt{5}$,$\sqrt{13}$)D.(3,2$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={0,1},B={1,2},则A∪B=(  )
A.B.{1}C.{0,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过直线x+y+2=0上点P作圆x2+y2=1的两条切线,切点分别为A,B,∠APB=60°,则点P的坐标是(  )
A.(0,-2)或(-2,0)B.(0,2)或(-2,0)C.(-2,0)D.(0,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.为了得到函数y=cos(2x+$\frac{π}{3}$),x∈R的图象,只需把函数y=cos2x的图象(  )
A.向左平行移动$\frac{π}{6}$个单位长度B.向左平行移动$\frac{π}{3}$个单位长度
C.向右平行移动$\frac{π}{3}$个单位长度D.向右平行移动$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知菱形ABCD的边长为4,∠ABC=$\frac{5π}{6}$,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率为1-$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.命题“?x∈R,x2+5x<6”的否定形式是?x∈R,x2+5x≥6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.f(x)定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意的正数a,b,若a<b,则必有(  )
A.bf(b)≤af(a)B.bf(a)≤af(b)C.af(a)≤bf(b)D.af(b)≤bf(a)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.“a、b都是有理数”的否定是“a、b都不是有理数”
C.命题“若x=y,则sinx=siny”的逆否命题为真命题
D.“x=-1”是“x2-5x-6=0”的必要不充分条件

查看答案和解析>>

同步练习册答案