在直角坐标系中,点P到两定点,的距离之和等于4,设点P的轨迹为,过点的直线C交于A,B两点.
(1)写出C的方程;
(2)设d为A、B两点间的距离,d是否存在最大值、最小值,若存在, 求出d的最大值、最小值.
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知椭圆的离心率为,其中左焦点F(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,
求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设双曲线的两个焦点分别为、,离心率为2.
(1)求双曲线的渐近线方程;
(2)过点能否作出直线,使与双曲线交于、两点,且,若存在,求出直线方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且
(Ⅰ)若过三点的圆恰好与直线相切,求椭圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:.
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,
且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(15分)已知椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个等边三角形,
(1)求椭圆的离心率;
(2)若焦点到同侧顶点的距离为,求椭圆的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com