分析 (Ⅰ)去掉绝对值,即可求不等式f(x)≤1的解集A;
(Ⅱ)当m,n∈A时,利用分析法即可证明:|m+n|≤mn+1.
解答 ( I)解:f(x)≤1即|2|x|-1|≤1.
∴-1≤2|x|-1≤1,∴|x|≤1…(2分)
解得:-1≤x≤1,所以A=[-1,1]…(4分)
( II)证明:要证:|m+n|≤mn+1,即证(m+n)2≤(mn+1)2…(6分)
因为 (m+n)2-(mn+1)2=m2+n2-m2n2-1=(m2-1)(1-n2)…(8分)
因为m,n∈A,所以m2≤1,n2≤1,所以(m2-1)(1-n2)≤0
所以(m+n)2≤(mn+1)2
所以,|m+n|≤mn+6…(10分)
点评 本题考查不等式的证明,考查分析法的综合运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | $\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?a≥-1,ln(en+1)≤$\frac{1}{2}$ | B. | ?a<-1,ln(en+1)≤$\frac{1}{2}$ | C. | ?a≥-1,ln(en+1)≤$\frac{1}{2}$ | D. | ?a<-1,ln(en+1)≤$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com