精英家教网 > 高中数学 > 题目详情
3.如果二次方程x2-px-q=0(其中p,q均是大于0的整数)的正根小于3,那么这样的二次方程有(  )
A.4个B.5个C.6个D.7个

分析 根据二次函数的性质判断出p,q的范围,求出答案即可.

解答 解:由△=p2+4q>0,-q<0,知方程的根为一正一负.
设 f(x)=x2-px-q,则 f(3)=32-3p-q>0,
即 3p+q<9.由于p,q均是正整数,
所以 p=1,q≤5或 p=2,q≤2.
于是共有7组 (p,q)符合题意.
 故选:D.

点评 本题考查了二次函数的性质,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知x,y是实数,i是虚数单位,$\frac{x}{1+i}=1-yi$,则复数x+yi在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.己知函数f(x)=|2|x|-1|.
(I)求不等式f(x)≤1的解集A;
(Ⅱ)当m,n∈A时,证明:|m+n|≤mn+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对于n个向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$,若存在n个不全为0的示数k1,k2,k3,…,kn,使得:k1$\overrightarrow{{a}_{1}}$+k2$\overrightarrow{{a}_{2}}$+k3$\overrightarrow{{a}_{3}}$+…+kn$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$成立;则称向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$是线性相关的,按此规定,能使向量$\overrightarrow{{a}_{1}}$=(1,0),$\overrightarrow{{a}_{2}}$=(1,-1),$\overrightarrow{{a}_{3}}$=(2,2)线性相关的实数k1,k2,k3,则k1+4k3的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)化简$\frac{{cos({{180}°}+α)•sin(α+{{360}°})}}{{sin(-α-{{180}°})•cos(-{{180}°}-α)}}$.
(2)已知$tanα=-\frac{3}{4}$,求$\frac{{cos(\frac{π}{2}+α)•sin(-π-α)}}{{cos(\frac{11π}{2}-α)•sin(\frac{11π}{2}+α)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设[x]表示不超过x的最大整数,如[4.3]=4,[-4,3]=-5.化简:$\frac{1}{[\sqrt{1×2}]×[\sqrt{2×3}]×[\sqrt{3×4}]}$+$\frac{1}{[\sqrt{2×3}]×[\sqrt{3×4}]×[\sqrt{4×5}]}$+…+$\frac{1}{[\sqrt{n×(n+1)}]×[\sqrt{(n+1)×(n+2)}]×[\sqrt{(n+2)×(n+3)}]}$(结果用n表示,其中n是大于0的整数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若log23=x,那么log43=$\frac{1}{2}$x;log3624=$\frac{x+3}{2x+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若MP和OM分别是角α=$\frac{7π}{8}$的正弦线和余弦线,那么下列结论中正确的是(  )
A.MP<OM<0B.OM>0>MPC.OM<MP<0D.MP>0>OM

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若$cos(\frac{π}{2}-α)=\frac{{\sqrt{2}}}{3}$,则cos(π-2α)=$-\frac{5}{9}$.

查看答案和解析>>

同步练习册答案