精英家教网 > 高中数学 > 题目详情
2.已知集合A={(x,y)|$\frac{|x|}{3}$+$\frac{|y|}{2}$≤1},B={(x,y)|$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$≤1},则命题“p:(x,y)∈A”是命题“q:(x,y)∈B”的充分不必要条件.(填:“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”).

分析 B={(x,y)|$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$≤1},表示椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1及其内部的点.而集合A={(x,y)|$\frac{|x|}{3}$+$\frac{|y|}{2}$≤1},表示经过椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的四个顶点的四条直线及其内部的点,即可判断出结论.

解答 解:B={(x,y)|$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$≤1},表示椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1及其内部的点.而集合A={(x,y)|$\frac{|x|}{3}$+$\frac{|y|}{2}$≤1},表示经过椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的四个顶点的四条直线及其内部的点,
则命题“p:(x,y)∈A”是命题“q:(x,y)∈B”的“充分不必要”条件.
故答案为:充分不必要

点评 本题考查了椭圆与直线的方程、不等式的解集、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=(x-\frac{1}{x})sinx$(-π≤x≤π且x≠0)的图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$\overrightarrow{a}$,$\overrightarrow{b}$是平面上的两个单位向量,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{3}{5}$.若m∈R,则|$\overrightarrow{a}$+m$\overrightarrow{b}$|的最小值是(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:
B餐厅分数频数分布表
分数区间频数
[0,10)2
[10,20)3
[20,30)5
[30,40)15
[40,50)40
[50,60]35
(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;
(Ⅱ)从对B餐厅评分在[0,20)范围内的人中随机选出2人,求2人中恰有1人评分在[0,10)范围内的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f'(x)=2x+m,且f(0)=0,函数f(x)的图象在点A(1,f(1))处的切线的斜率为3,数列$\left\{{\frac{1}{f(n)}}\right\}$的前n项和为Sn,则S2017的值为(  )
A.$\frac{2017}{2018}$B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.$\frac{2016}{2017}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知双曲线的两个焦点坐标是(0,±3),且该双曲线经过点($\sqrt{15}$,4),求这个双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx-$\frac{a}{2}{x^2}$-x+a(a∈R)在其定义域内有两个不同的极值点.
(1)求a的取值范围;
(2)记两个极值点分别为x1,x2,且x1<x2,已知λ>0,若不等式e1+λ<x1x2λ恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.对于数列{an},定义Tn=a1a2+a2a3+…+anan+1,n∈N*
(1)若an=n,是否存在k∈N*,使得Tk=2017?请说明理由;
(2)若a1=3,${T_n}={6^n}-1$,求数列{an}的通项公式;
(3)令${b_n}=\left\{\begin{array}{l}{T_2}-2{T_1},\begin{array}{l}{\;}{\;}{n=1}\end{array}\\{T_{n+1}}+{T_{n-1}}-2{T_n}\begin{array}{l}{\;},{n≥2,n∈{N^*}}\end{array}\end{array}\right.$,求证:“{an}为等差数列”的充要条件是“{an}的前4项为等差数列,且{bn}为等差数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1,F2,O为坐标原点,A为右顶点,P为双曲线左支上一点,若$\frac{{{{|{P{F_2}}|}^2}}}{{|{P{F_1}}|-|{OA}|}}$存在最小值为12a,则双曲线一三象限的渐近线倾斜角的余弦值的最小值是(  )
A.$\frac{1}{5}$B.$\frac{1}{2}$C.$\frac{{2\sqrt{6}}}{5}$D.$\frac{{\sqrt{3}}}{5}$

查看答案和解析>>

同步练习册答案