| A. | $\frac{2017}{2018}$ | B. | $\frac{2014}{2015}$ | C. | $\frac{2015}{2016}$ | D. | $\frac{2016}{2017}$ |
分析 由题意可设f(x)=x2+mx+c,运用导数的几何意义,由条件可得m,c的值,求出$\frac{1}{f(n)}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,再由数列的求和方法:裂项相消求和,计算即可得到所求和.
解答 解:f'(x)=2x+m,可设f(x)=x2+mx+c,
由f(0)=0,可得c=0.
可得函数f(x)的图象在点A(1,f(1))处的切线的斜率为2+m=3,
解得m=1,
即f(x)=x2+x,
则$\frac{1}{f(n)}$=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
数列$\left\{{\frac{1}{f(n)}}\right\}$的前n项和为Sn,
则S2017=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2017}$-$\frac{1}{2018}$=1-$\frac{1}{2018}$=$\frac{2017}{2018}$.
故选:A.
点评 本题考查二次函数的求法,注意运用导数公式,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1+i | B. | -1-i | C. | 1-i | D. | 1+i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,2) | B. | (3,-2) | C. | (4,6) | D. | (4,-6) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{25}$ | B. | $\frac{17}{25}$ | C. | -$\frac{17}{25}$ | D. | $\frac{31}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com