精英家教网 > 高中数学 > 题目详情
10.已知点P是函数$f(x)=cosx(0≤x≤\frac{π}{3})$图象上的一点,则曲线y=f(x)在点P处的切线斜率取得最大值时切线的方程为y=1.

分析 求出f(x)的导数,设P(m,n),可得切线的斜率,由正弦函数的单调性,可得切线的斜率的最大值,以及切点坐标,进而得到所求切线的方程.

解答 解:函数$f(x)=cosx(0≤x≤\frac{π}{3})$的导数为f′(x)=-sinx,
设P(m,n),可得在点P处的切线斜率为k=-sinm,
由0≤m≤$\frac{π}{3}$,可得k的最大值为k=-sin0=0,
此时m=0,
n=cos0=1,
可得所求切线的方程为y=1.
故答案为:y=1.

点评 本题考查导数的运用:求切线的方程,同时考查正弦函数的单调性的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥E-ABCD中,平面ABE⊥底面ABCD,侧面AEB为等腰直角三角形,∠AEB=$\frac{π}{2}$,底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=2CD=2BC
(1)求直线EC与平面ABE所成角的正弦值;
(2)线段EA上是否存在点F,使EC∥平面FBD?若存在,求出$\frac{EF}{EA}$;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}、{bn}满足${b_n}={log_2}{a_n},n∈{N^*}$,其中{bn}是等差数列,且a9a2009=4,则b1+b2+b3+…+b2017=2017.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{e^x}{x+1}$.
(1)求f(x)在(1,f(1))处的切线方程;
(2)若关于x的不等式(x+1)f(x)≥$\frac{1}{2}{x^2}$+x+a在[0,+∞)上恒成立,求实数a的取值范围;
(3)设函数g(x)=$\frac{(x-1)(x+m)}{lnx}$,其定义域是D,若关于x的不等式(x+1)f(x)<g(x)在D上有解,求整数m的最小值.(参考数据:$\sqrt{e}$=1.65,ln2=0.69)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若命题“?x0∈R,x02-2x0+m≤0”是假命题,则m的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\left\{\begin{array}{l}m{log_{2017}}x+3{x^3},x>0\\{log_{2017}}(-x)+n{x^3},x<0\end{array}\right.$为偶函数,则m-n=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设抛物线fn(x)=x2-2n+1x+4n+2n的顶点为Pn(an,bn),cn=an+bn,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从射击、乒乓球、跳水、田径四个大项的北京奥运冠军中选出10名作“夺冠之路”的励志报告.若每个大项中至少选派两人,则名额分配有几种情况?(  )
A.10种B.15种C.20种D.25种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知抛物线M:y2=4x,圆N:(x-1)2+y2=r2(其中r为常数,且r>0),过点(1,0)的直线l交圆N于C、D两点,交抛物线M于A、B两点,若使|AC|=|BD|成立的直线有3条,则r的取值范围是(  )
A.(0,1)B.(1,2)C.(2,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

同步练习册答案