精英家教网 > 高中数学 > 题目详情
5.若命题“?x0∈R,x02-2x0+m≤0”是假命题,则m的取值范围是(1,+∞).

分析 命题“?x0∈R,x02-2x0+m≤0”是假命题,可得:命题“?x∈R,x2-2x+m>0”是真命题.因此?x∈R,m>(-x2+2x)max

解答 解:命题“?x0∈R,x02-2x0+m≤0”是假命题,
则命题“?x∈R,x2-2x+m>0”是真命题.
∴?x∈R,m>(-x2+2x)max.∵-x2+2x=-(x-1)2+1≤1.
∴m>1.
则m的取值范围是(1,+∞).
故答案为:(1,+∞).

点评 本题考查了简易逻辑的应用、函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.当x≥3时,不等式$x+\frac{1}{x-1}≥a$恒成立,则实数a的取值范围$({-∞,\frac{7}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a=3,b=4,cosB=$\frac{3}{5}$,则sinC=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若角α的终边落在直线y=2x上,求sin2α-cos2α+sinαcosα的值1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\left\{\begin{array}{l}x+\frac{2}{e},x<0\\ \frac{x}{e^x},x≥0\end{array}\right.$,若f(x1)=f(x2)=f(x3)(x1<x2<x3),则$\frac{{f({x_2})}}{x_1}$的取值范围为(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点P是函数$f(x)=cosx(0≤x≤\frac{π}{3})$图象上的一点,则曲线y=f(x)在点P处的切线斜率取得最大值时切线的方程为y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}的前n项和是Sn=(n+2)2+k,当k=-4时,{an}是公差d=2的等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知m,n为空间中两条不同的直线,α,β为空间中两个不同的平面,下列命题正确的是(  )
A.若n⊥α,n⊥β,m?β则m∥αB.若m⊥α,α⊥β,则m∥β
C.若m,n在γ内的射影互相平行,则m∥nD.若m⊥l,α∩β=l,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题p:“?x0∈R,x02-x0>0”,则¬p是(  )
A.?x0∈R,x02-x0<0B.?x0∈R,x02-x0≤0C.?x∈R,x2-x<0D.?x∈R,x2-x≤0

查看答案和解析>>

同步练习册答案