精英家教网 > 高中数学 > 题目详情
17.在圆锥VO中,O为底面圆心,半径OA⊥OB,且OA=VO=1,则O到平面VAB的距离为$\frac{\sqrt{3}}{3}$

分析 以O为原点,OA为x轴,OB为y轴,OV为z轴,建立空间直角坐标系,利用向量法能求出O到平面VAB的距离.

解答 解:以O为原点,OA为x轴,OB为y轴,OV为z轴,建立空间直角坐标系,
则由题意:O(0,0,0),A(1,0,0),B(0,1,0),V(0,0,1),
$\overrightarrow{AO}$=(-1,0,0),$\overrightarrow{AV}$=(-1,0,1),$\overrightarrow{AB}$=(-1,1,0),
设平面VAB的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AV}=-x+z=0}\\{\overrightarrow{n}•\overrightarrow{AB}=-x+y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,1),
则O到平面VAB的距离d=$\frac{|\overrightarrow{AO}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{|-1|}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$.
故答案为:$\frac{\sqrt{3}}{3}$.

点评 本题考查点到平面的距离的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知在锐角三角形ABC中,sinA=$\frac{4}{5}$,B=$\frac{π}{4}$.
(1)求cosA的值;
(2)若b=2$\sqrt{2}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图是某直四棱柱被平面α所截得的部分,底面ABCD是矩形,侧棱GC、ED、FB都垂直于底面ABCD,GC=3,AB=2$\sqrt{2}$,BC=$\sqrt{5}$.
四边形AEGF为菱形,经过C且垂直于AG的平面与EG、AG、FG分别交于点M、H、N;
(1)求证:CN⊥BH;
(2)求面AFGE与底面ABCD所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知四棱锥P-ABCD的底面是矩形,PD⊥平面ABCD,PD=CD,点E是PC的中点,连接DE、BD、BE.
(Ⅰ)(i)证明:DE⊥平面PBC;
(ii)若把四个面都是直角三角形的四面体叫做直角四面体,试判断四面体EBCD是否为直角四面体,若是写出每个面的直角(只需写结论),若不是请说明理由.
(Ⅱ)求二面角P-BC-A的大小;
(Ⅲ)记三棱锥P-ABD的体积为V1,四面体EBCD的体积为V2,求$\frac{V_1}{V_2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线C:${x^2}-\frac{y^2}{{{3^{\;}}}}=1$,A、B是双曲线上关于原点对称的两点,M是双曲线上异于A、B的一点,直线MA、MB的斜率分别记为k1,k2,且k1∈[-3,-1],则k2的取值范围是[-3,-1].

查看答案和解析>>

科目:高中数学 来源:2017届重庆市高三文上适应性考试一数学试卷(解析版) 题型:解答题

已知分别是内角的对边,

(1)若,求

(2)若,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直三棱柱ABC-A1B1C1中,∠BAC=90°,D,E分别为CC1和A1B1的中点,且A1A=AC=2AB=2.
(1)求证:C1E∥面A1BD;
(2)求点C1到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=$\frac{1}{2}$AB=2,点E为AC中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)若F是CD的中点,证明:AD∥平面EFB;
(Ⅱ)求三棱锥C-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,四边形ABCD是菱形,O是AC与BD的交点,SA⊥平面ABCD
(Ⅰ)求证:平面SAC⊥平面SBD;
(Ⅱ)若∠DAB=120°,DS⊥BS,AB=2,求SO的长及点A到平面SBD的距离.

查看答案和解析>>

同步练习册答案