精英家教网 > 高中数学 > 题目详情
15.研究cosnα的公式,可以得到以下结论:
2cos2α=(2cosα)2-2,
2cos3α=(2cosα)3-3(2cosα),
2cos4α=(2cosα)4-4(2cosα)2+2,
2cos5α=(2cosα)5-5(2cosα)3+5(2cosα),
2cos6α=(2cosα)6-6(2cosα)4+9(2cosα)2-2,
2cos7α=(2cosα)7-7(2cosα)5+14(2cosα)3-7(2cosα),
以此类推:2cos8α=(2cosα)m+n(2cosα)p+q(2cosα)4-16(2cosα)2+r,
则m+n+p+q+r=28.

分析 观察等式左边的α的系数,以及等式右边各项系数指数的特点,m、n,p,q,r变化趋势,不难归纳出变化规律,再求出m、n,p,q,r的值,可求出答案

解答 解:由题意可第一列的指数和和前面的nα的数字相同,即m=8,
第二列的数字全为负数,且系数和比前面的nα的相同,即n=-8,
p比n小2,所以p=6,q是肩上两个数绝对值和减1,所以q=20,r=2,
所以m+n+p+q+r=8-8+6+20+2=28;
故答案为:28.

点评 本题考查归纳推理,难点是根据能够找出数之间的内在规律,考查观察、分析、归纳的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某地高中年级学生某次身体素质体能测试的原始成绩采用百分制,已知这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制,各等级划分标准见下表,并规定:A,B,C 三级为合格,D 级为不合格.
 百分制[85,100][70,85)[60,70)[50,60)
 等级 A B C D
为了了解该地高中年级学生身体素质情况,从中抽取了n 名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.
(Ⅰ)求n及频率分布直方图中 x,y 的值;
(Ⅱ)根据统计思想方法,以事件发生的频率作为相应事件发生的概率,若在该地高中学生中任选3 人,求至少有1人成绩是合格等级的概率;
(Ⅲ)上述容量为n 的样本中,从 A、C 两个等级的学生中随机抽取了3 名学生进行调研,记ξ为所抽取的3 名学生中成绩为 A 等级的人数,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=alnx-x+$\frac{1}{x}$,在区间(0,$\frac{1}{2}$]内任取两个不相等的实数m,n,若不等式mf(m)+nf(n)<nf(m)+mf(n)恒成立,则实数a的取值范围是(  )
A.(-∞,2]B.(-∞,$\frac{5}{2}$]C.[2,$\frac{5}{2}$]D.[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知坐标平面内三点A(-1,1),B(1,0),C(2,$\sqrt{3}$+1).
(1)求直线AC的斜率和倾斜角;
(2)若D为△ABC的边AC上一动点,求直线BD的斜率k的变化范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某城市有甲、乙、丙三个旅游景点,一位游客游览这三个景点的概率分别是0.4、0.5、0.6,且游客是否游览哪个景点互不影响,用ξ表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值.
(1)求ξ的分布列及期望;
(2)记“f(x)=2ξx+4在[-3,-1]上存在x,使f(x)=0”为事件A,求事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在边长为a的正方形内有图形Ω,现向正方形内撒豆子,若撒在图形Ω内核正方形内的豆子数分别为m,n,则图形Ω面积的估计值为(  )
A.$\frac{ma}{n}$B.$\frac{na}{m}$C.$\frac{m{a}^{2}}{n}$D.$\frac{n{a}^{2}}{m}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=(x-x3)e|x|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给定y与x的一组样本数据,求得相关系数r=-0.990,则(  )
A.y与x负线性相关B.y与x正线性相关
C.y与x的线性相关性很强D.y与x的相关性很强

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知定义域为[-1,0)∪(0,1]的奇函数f(x),当x∈(0,1]时,f(x)=$\sqrt{1-{x}^{2}}$,则不等式f(x)<f(-x)+x的解集为($\frac{\sqrt{3}}{2}$,1]∪[-1,-$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

同步练习册答案