精英家教网 > 高中数学 > 题目详情
20.如图,在边长为a的正方形内有图形Ω,现向正方形内撒豆子,若撒在图形Ω内核正方形内的豆子数分别为m,n,则图形Ω面积的估计值为(  )
A.$\frac{ma}{n}$B.$\frac{na}{m}$C.$\frac{m{a}^{2}}{n}$D.$\frac{n{a}^{2}}{m}$

分析 先求出正方形的面积为a2,再由概率性质能求出图形Ω面积的估计值.

解答 解:如图,在边长为a的正方形内有图形Ω,则正方形的面积为a2
现向正方形内撒豆子,
若撒在图形Ω内和正方形内的豆子数分别为m,n,
则图形Ω面积的估计值为:$\frac{m}{n}×{a}^{2}$=$\frac{m{a}^{2}}{n}$.
故选:C.

点评 本题考查不规则图形的面积的估计值,考查逻辑思维和推理能力,解题时要认真审题,注意概率知识的合理运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.定义:在等式(x2+x+1)n=${D}_{n}^{0}{x}^{2n}$${+D}_{n}^{1}{x}^{2n-1}{+D}_{n}^{2}{x}^{2n-2}+…{+D}_{n}^{2n-1}x{+D}_{n}^{2n}$(n∈N)中,把${D}_{n}^{0}{,D}_{n}^{1}{,D}_{n}^{2}$,…,${D}_{n}^{2n}$叫做三项式的n次系数列(如三项式的1次系数列是1,1,1).
(1)填空:三项式的2次系数列是1,2,3,2,1;三项式的3次系数列是1,3,6,7,6,3,1.
(2)由杨辉三角数阵表可以得到二项式系数的性质${C}_{n+1}^{k}{=C}_{n}^{k}{+C}_{n}^{k-1}$,类似的请用三项式n次系数列中的系数表示${D}_{n+1}^{k+1}$(1≤k≤2n-1,k∈N)(无须证明);
(3)求${D}_{6}^{3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知ω>0,函数f(x)=sin(ωx+$\frac{π}{3}$)在($\frac{π}{2}$,π)上单调递减,则ω的取值范围是  )
A.[$\frac{1}{3}$,$\frac{7}{6}$]B.[$\frac{1}{3}$,$\frac{5}{6}$]C.[0,$\frac{1}{3}$]D.[0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设A为某圆周上一定点,在圆周上任取一点P,则弦长|AP|超过半径的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{π}$D.1-$\frac{1}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.研究cosnα的公式,可以得到以下结论:
2cos2α=(2cosα)2-2,
2cos3α=(2cosα)3-3(2cosα),
2cos4α=(2cosα)4-4(2cosα)2+2,
2cos5α=(2cosα)5-5(2cosα)3+5(2cosα),
2cos6α=(2cosα)6-6(2cosα)4+9(2cosα)2-2,
2cos7α=(2cosα)7-7(2cosα)5+14(2cosα)3-7(2cosα),
以此类推:2cos8α=(2cosα)m+n(2cosα)p+q(2cosα)4-16(2cosα)2+r,
则m+n+p+q+r=28.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$\frac{1}{2}$sinx+$\frac{\sqrt{3}}{2}$cosx的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为了得到函数y=$\sqrt{3}$sin3x+cos3x的图象,可以将函数y=2sin3x的图象(  )
A.向右平移$\frac{π}{6}$个单位B.向左平移$\frac{π}{6}$个单位
C.向右平移$\frac{π}{18}$个单位D.向左平移$\frac{π}{18}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.与直线x-2y+6=0平行且过点(0,-1)的直线方程为(  )
A.2x+y+1=0B.x+2y+2=0C.x-2y-2=0D.2x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥S-ABCD的底面是正方形,每条侧棱长都是底面边长的$\sqrt{2}$倍,P为侧棱SD上的点.
(1)若SD⊥平面PAC,求二面角P-AC-D的大小;
(2)侧棱SC上是否存在一点E,使得BE⊥SD,若存在,求SE:EC的值;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案