精英家教网 > 高中数学 > 题目详情
3.已知坐标平面内三点A(-1,1),B(1,0),C(2,$\sqrt{3}$+1).
(1)求直线AC的斜率和倾斜角;
(2)若D为△ABC的边AC上一动点,求直线BD的斜率k的变化范围.

分析 (1)直接由已知点的坐标代入斜率公式求直线AC的斜率,再由斜率是倾斜角的正切值可得直线AC的倾斜角;
(2)画出图形,求出AB,BC所在直线的斜率得答案.

解答 解:(1)由A(-1,1),C(2,$\sqrt{3}$+1),得${k}_{AC}=\frac{\sqrt{3}+1-1}{2-(-1)}=\frac{\sqrt{3}}{3}$,
设直线AC的倾斜角为α(0°≤α<180°),则tanα=$\frac{\sqrt{3}}{3}$.
∴直线AC的倾斜角为30°;
(2)如图:
∵A(-1,1),B(1,0),C(2,$\sqrt{3}$+1),
∴${k}_{BC}=\frac{\sqrt{3}+1}{2-1}=\sqrt{3}+1$,${k}_{AB}=\frac{0-1}{1-(-1)}=-\frac{1}{2}$.
∴直线BD的斜率k的变化范围为(-∞,-$\frac{1}{2}$]∪[$\sqrt{3}+1$,+∞).

点评 本题考查直线的斜率,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知随机变量X服从正态分布N(2,σ2)(σ>0),且P(X>0)=0.8,则P(2<X<4)=(  )
A.0.2B.0.3C.0.4D.0.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,若输入x=20,则输出x的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{8}$C.$\frac{3}{4}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知ω>0,函数f(x)=sin(ωx+$\frac{π}{3}$)在($\frac{π}{2}$,π)上单调递减,则ω的取值范围是  )
A.[$\frac{1}{3}$,$\frac{7}{6}$]B.[$\frac{1}{3}$,$\frac{5}{6}$]C.[0,$\frac{1}{3}$]D.[0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+a,g(x)=$\frac{b}{x}$-x(a,b∈R).
(Ⅰ)若曲线y=f(x)与曲线y=g(x)在点(1,f(1))处的切线方程相同,求实数a,b的值;
(Ⅱ)若f(x)≥g(x)恒成立,求证:当a≤-2时,b≤-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设A为某圆周上一定点,在圆周上任取一点P,则弦长|AP|超过半径的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{π}$D.1-$\frac{1}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.研究cosnα的公式,可以得到以下结论:
2cos2α=(2cosα)2-2,
2cos3α=(2cosα)3-3(2cosα),
2cos4α=(2cosα)4-4(2cosα)2+2,
2cos5α=(2cosα)5-5(2cosα)3+5(2cosα),
2cos6α=(2cosα)6-6(2cosα)4+9(2cosα)2-2,
2cos7α=(2cosα)7-7(2cosα)5+14(2cosα)3-7(2cosα),
以此类推:2cos8α=(2cosα)m+n(2cosα)p+q(2cosα)4-16(2cosα)2+r,
则m+n+p+q+r=28.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为了得到函数y=$\sqrt{3}$sin3x+cos3x的图象,可以将函数y=2sin3x的图象(  )
A.向右平移$\frac{π}{6}$个单位B.向左平移$\frac{π}{6}$个单位
C.向右平移$\frac{π}{18}$个单位D.向左平移$\frac{π}{18}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设△ABC的角A,B,C所对的边分别是a,b,c,若A=60°,B=75°,c=8,则a=(  )
A.$4\sqrt{7}$B.$4\sqrt{6}$C.$4\sqrt{5}$D.$4\sqrt{2}$

查看答案和解析>>

同步练习册答案