精英家教网 > 高中数学 > 题目详情
13.设△ABC的角A,B,C所对的边分别是a,b,c,若A=60°,B=75°,c=8,则a=(  )
A.$4\sqrt{7}$B.$4\sqrt{6}$C.$4\sqrt{5}$D.$4\sqrt{2}$

分析 利用三角形内角和公式求出角C,再利用正弦定理求得a的值.

解答 解:△ABC的角A,B,C所对的边分别是a,b,c,若A=60°,B=75°,∴C=180°-A-B=45°,
∵c=8,故由正弦定理可得$\frac{a}{sinA}$=$\frac{c}{sinC}$,即 $\frac{a}{\frac{\sqrt{3}}{2}}$=$\frac{8}{\frac{\sqrt{2}}{2}}$,∴a=4$\sqrt{6}$,
故选:B.

点评 本题主要考查三角形内角和公式、正弦定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知坐标平面内三点A(-1,1),B(1,0),C(2,$\sqrt{3}$+1).
(1)求直线AC的斜率和倾斜角;
(2)若D为△ABC的边AC上一动点,求直线BD的斜率k的变化范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给定y与x的一组样本数据,求得相关系数r=-0.990,则(  )
A.y与x负线性相关B.y与x正线性相关
C.y与x的线性相关性很强D.y与x的相关性很强

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sinxsin($\frac{π}{6}$-x).
(Ⅰ)求f($\frac{π}{3}$)及f(x)的最小正周期T的值;
(Ⅱ)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知圆(x-2)2+y2=4的圆心为C,过原点O的直线l与圆交于A,B两点.若△ABC的面积为1,则满足条件的直线l有(  )
A.2条B.4条C.8条D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=(x+1)2-2x的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知定义域为[-1,0)∪(0,1]的奇函数f(x),当x∈(0,1]时,f(x)=$\sqrt{1-{x}^{2}}$,则不等式f(x)<f(-x)+x的解集为($\frac{\sqrt{3}}{2}$,1]∪[-1,-$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.抛物线y=$\frac{1}{4a}$x2(a≠0)的焦点坐标为(  )
A.a>0时为(0,a),a<0时为(0,-a)B.a>0时为(0,$\frac{a}{2}$),a<0时为(0,-$\frac{a}{2}$)
C.(0,a)D.($\frac{1}{a}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校高一年级某次数学竞赛随机抽取100名学生的成绩,分组为[50,60),[60,70),[70,80),[80,90),[90,100],统计后得到频率分布直方图如图所示:
(1)试估计这组样本数据的众数和中位数(结果精确到0.1);
(2)年级决定在成绩[70,100]中用分层抽样抽取6人组成一个调研小组,对高一年级学生课外学习数学的情况做一个调查,则在[70,80),[80,90),[90,100]这三组分别抽取了多少人?
(3)现在要从(2)中抽取的6人中选出正副2个小组长,求成绩在[80,90)中至少有1人当选为正、副小组长的概率.

查看答案和解析>>

同步练习册答案