精英家教网 > 高中数学 > 题目详情
8.已知圆(x-2)2+y2=4的圆心为C,过原点O的直线l与圆交于A,B两点.若△ABC的面积为1,则满足条件的直线l有(  )
A.2条B.4条C.8条D.无数条

分析 根据题意画出图形,结合图形求出圆心C到直线l的距离d和弦长|AB|,
计算△ABC的面积,求出直线的斜率k的值,即可得出满足条件的直线条数.

解答 解:圆(x-2)2+y2=4的圆心为C(2,0),
设过原点O的直线l为y=kx(k≠0),
则圆心C到直线l的距离为d=$\frac{|2k|}{\sqrt{{k}^{2}+1}}$,
弦长|AB|=2$\sqrt{{2}^{2}-\frac{{4k}^{2}}{{k}^{2}+1}}$;
∴△ABC的面积为
S=$\frac{1}{2}$×2$\sqrt{4-\frac{{4k}^{2}}{{k}^{2}+1}}$×$\frac{|2k|}{\sqrt{{k}^{2}+1}}$=1,
整理得k4-14k2+1=0,
解得k2=7+4$\sqrt{3}$或k2=7-4$\sqrt{3}$,
即k=±(2+$\sqrt{3}$)或k=±(2-$\sqrt{3}$);
∴满足条件的直线l有4条.
故选:B.

点评 本题考查了直线与圆的方程的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+a,g(x)=$\frac{b}{x}$-x(a,b∈R).
(Ⅰ)若曲线y=f(x)与曲线y=g(x)在点(1,f(1))处的切线方程相同,求实数a,b的值;
(Ⅱ)若f(x)≥g(x)恒成立,求证:当a≤-2时,b≤-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若不等式ax2-bx+c>0的解集为{x|-2<x<3},求不等式cx2-bx-a<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数x,y满足$\left\{\begin{array}{l}{2x-3y+6≥0}\\{x≤0}\\{y≤0}\end{array}\right.$,那么z=y-x的最大值是(  )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设集合U={1,2,…,100},T⊆U.对数列{an}(n∈N*),规定:
①若T=∅,则ST=0;
②若T={n1,n2,…,nk},则ST=a${\;}_{{n}_{1}}$+a${\;}_{{n}_{2}}$+…+a${\;}_{{n}_{k}}$.
例如:当an=2n,T={1,3,5}时,ST=a1+a3+a5=2+6+10=18.
已知等比数列{an}(n∈N*),a1=1,且当T={2,3}时,ST=12,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设△ABC的角A,B,C所对的边分别是a,b,c,若A=60°,B=75°,c=8,则a=(  )
A.$4\sqrt{7}$B.$4\sqrt{6}$C.$4\sqrt{5}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x、y满足约束条件$\left\{\begin{array}{l}3x+y-6≤0\\ x+y≥2\\ y≤2\end{array}\right.$,则x2+y2的最小值为(  )
A.$\sqrt{2}$B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=x2+2(a-a2)x+4a-1,若存在x1∈[a-2,a-1],存在x2∈[a+3,a+6],满足f(x1+1)=f(x2),则实数a的取值范围为($\frac{2-\sqrt{14}}{2}$,$\frac{2-\sqrt{10}}{2}$)∪($\frac{2+\sqrt{10}}{2}$,$\frac{2+\sqrt{14}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列各组数,可以是钝角三角形的长的是(  )
A.6,7,8B.7,8,10C.2,6,7D.5,12,13

查看答案和解析>>

同步练习册答案