分析 由f(x₁+1)=f(x₂),推导出[(x₁+1)-(a2-a)]2=[x₂-(a2-a)]2,从而x₁+x₂=2(a2-a)-1,进而2a+2≤2(a2-a)-1≤2a+4,由此能求出实数a的取值范围.
解答 解:∵f(x)=x2+2(a-a2)x+4a-1=[x-(a2-a)]2-(a-a2)2+4a-1,
∴f(x₁+1)=[(x₁+1)-(a2-a)]2-(a-a2)2+4a-1,
f(x₂)=[x₂-(a2-a)]2-(a-a2)2+4a-1,
∵f(x₁+1)=f(x₂),
∴[(x₁+1)-(a2-a)]2=[x₂-(a2-a)]2,
(x₁+1)2-2(a2-a)(x₁+1)=x₂2-2(a2-a)x₂,
(x₁+1-x₂)(x₁+x₂+1)=2(a2-a)(x₁+1-x₂),
∴x₁+x₂=2(a2-a)-1,
∵x₁+x₂≤a+6+(a-2)=2a+4,
∴x₁+x₂≥a+3+(a-1)=2a+2,
∴2a+2≤2(a2-a)-1≤2a+4,
整理,得:2a2-4a-3≥0或2a2-4a-5≤0,
解得实数a的取值范围为($\frac{2-\sqrt{14}}{2}$,$\frac{2-\sqrt{10}}{2}$)∪($\frac{2+\sqrt{10}}{2}$,$\frac{2+\sqrt{14}}{2}$).
故答案为:($\frac{2-\sqrt{14}}{2}$,$\frac{2-\sqrt{10}}{2}$)∪($\frac{2+\sqrt{10}}{2}$,$\frac{2+\sqrt{14}}{2}$).
点评 本题考查实数的取值范围的求法,考查二次函数、一元二次不等式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2条 | B. | 4条 | C. | 8条 | D. | 无数条 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>0时为(0,a),a<0时为(0,-a) | B. | a>0时为(0,$\frac{a}{2}$),a<0时为(0,-$\frac{a}{2}$) | ||
| C. | (0,a) | D. | ($\frac{1}{a}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{8}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{3\sqrt{3}}{4}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 624 | B. | 576 | C. | 672 | D. | 720 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com