精英家教网 > 高中数学 > 题目详情
16.已知实数x,y满足$\left\{\begin{array}{l}{2x-3y+6≥0}\\{x≤0}\\{y≤0}\end{array}\right.$,那么z=y-x的最大值是(  )
A.1B.2C.3D.5

分析 画出可行域,将目标函数变形画出相应的直线,将直线平移至A(-3,0)时纵截距最大,z最大.

解答 解:画出实数x,y满足$\left\{\begin{array}{l}{2x-3y+6≥0}\\{x≤0}\\{y≤0}\end{array}\right.$的可行域如图:
将z=y-x变形为y=x+z作直线y=x将其平移至A(-3,0)时,直线的纵截距最大,最大为:3.
故选:C.

点评 利用线性规划求函数的最值时,关键是将目标函数赋予几何意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=alnx-x+$\frac{1}{x}$,在区间(0,$\frac{1}{2}$]内任取两个不相等的实数m,n,若不等式mf(m)+nf(n)<nf(m)+mf(n)恒成立,则实数a的取值范围是(  )
A.(-∞,2]B.(-∞,$\frac{5}{2}$]C.[2,$\frac{5}{2}$]D.[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=(x-x3)e|x|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给定y与x的一组样本数据,求得相关系数r=-0.990,则(  )
A.y与x负线性相关B.y与x正线性相关
C.y与x的线性相关性很强D.y与x的相关性很强

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.△ABC的三内角A、B、C满足sin2A+sin2B=2sin2C,那么cosC的最小值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sinxsin($\frac{π}{6}$-x).
(Ⅰ)求f($\frac{π}{3}$)及f(x)的最小正周期T的值;
(Ⅱ)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知圆(x-2)2+y2=4的圆心为C,过原点O的直线l与圆交于A,B两点.若△ABC的面积为1,则满足条件的直线l有(  )
A.2条B.4条C.8条D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知定义域为[-1,0)∪(0,1]的奇函数f(x),当x∈(0,1]时,f(x)=$\sqrt{1-{x}^{2}}$,则不等式f(x)<f(-x)+x的解集为($\frac{\sqrt{3}}{2}$,1]∪[-1,-$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=6,BC=8,若此三棱柱外接球的半径为13,则该三棱柱的表面积为(  )
A.624B.576C.672D.720

查看答案和解析>>

同步练习册答案