精英家教网 > 高中数学 > 题目详情
5.某地高中年级学生某次身体素质体能测试的原始成绩采用百分制,已知这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制,各等级划分标准见下表,并规定:A,B,C 三级为合格,D 级为不合格.
 百分制[85,100][70,85)[60,70)[50,60)
 等级 A B C D
为了了解该地高中年级学生身体素质情况,从中抽取了n 名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.
(Ⅰ)求n及频率分布直方图中 x,y 的值;
(Ⅱ)根据统计思想方法,以事件发生的频率作为相应事件发生的概率,若在该地高中学生中任选3 人,求至少有1人成绩是合格等级的概率;
(Ⅲ)上述容量为n 的样本中,从 A、C 两个等级的学生中随机抽取了3 名学生进行调研,记ξ为所抽取的3 名学生中成绩为 A 等级的人数,求随机变量ξ的分布列及数学期望.

分析 (Ⅰ)由频率分布直方图及茎叶图能求出n及频率分布直方图中 x,y 的值.
(Ⅱ)成绩是合格等级人数为45人,抽取的50人中成绩是合格等级的频率为$\frac{9}{10}$,得到从该校学生中任选1人,成绩是合格等级的概率为$\frac{9}{10}$,设在该校高一学生中任选3人,至少有1人成绩是合格等级的事件为A,利用对立事件概率计算公式能求出至少有1人成绩是合格等级的概率.
(Ⅲ)由题意C等级学生人数为9人,A等级的人数为3人,则ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列及E(ξ).

解答 解:(Ⅰ)由题意知样本容量n=$\frac{6}{0.012×10}$=50,
x=$\frac{2}{50×10}$=0.004.
y=$\frac{1-0.04-0.1-0.12-0.56}{10}$=0.018.
(Ⅱ)成绩是合格等级人数为:(1-0.1)×50=45人,
抽取的50人中成绩是合格等级的频率为$\frac{9}{10}$,
故从该校学生中任选1人,成绩是合格等级的概率为$\frac{9}{10}$,
设在该校高一学生中任选3人,至少有1人成绩是合格等级的事件为A,
则P(A)=1-(1-$\frac{9}{10}$)3=$\frac{999}{1000}$.
(Ⅲ)由题意C等级学生人数为0.18×50=9人,A等级的人数为3人,
∴ξ的可能取值为0,1,2,3,
P(ξ=0)=$\frac{{C}_{9}^{3}}{{C}_{12}^{3}}$=$\frac{21}{55}$,
P(ξ=1)=$\frac{{C}_{9}^{2}{C}_{3}^{1}}{{C}_{12}^{3}}$=$\frac{27}{55}$,
P(ξ=2)=$\frac{{C}_{9}^{1}{C}_{3}^{2}}{{C}_{12}^{3}}$=$\frac{27}{220}$,
P(ξ=3)=$\frac{{C}_{3}^{3}}{{C}_{12}^{3}}$=$\frac{1}{220}$,
∴ξ的分布列为:

 ξ 0 1 3
 P $\frac{21}{55}$ $\frac{27}{55}$ $\frac{27}{220}$ $\frac{1}{220}$
E(ξ)=$0×\frac{21}{55}+1×\frac{27}{55}+2×\frac{27}{220}+3×\frac{1}{220}$=$\frac{3}{4}$.

点评 本题考查考查频率分布直方图、茎叶图、概率、离散型机变量分布列等基础知识,考查数据处理能力、运算求解能力,考查数形结合思想,函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.函数$y=\sqrt{{x^2}-2x+10}+1$的值域为(  )
A.(0,+∞)B.(1,+∞)C.[0,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.方程2|x-1|=4的解为x=3或x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知随机变量X服从正态分布N(2,σ2)(σ>0),且P(X>0)=0.8,则P(2<X<4)=(  )
A.0.2B.0.3C.0.4D.0.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.4sin15°sin165°-2等于(  )
A.1B.-1C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.定义:在等式(x2+x+1)n=${D}_{n}^{0}{x}^{2n}$${+D}_{n}^{1}{x}^{2n-1}{+D}_{n}^{2}{x}^{2n-2}+…{+D}_{n}^{2n-1}x{+D}_{n}^{2n}$(n∈N)中,把${D}_{n}^{0}{,D}_{n}^{1}{,D}_{n}^{2}$,…,${D}_{n}^{2n}$叫做三项式的n次系数列(如三项式的1次系数列是1,1,1).
(1)填空:三项式的2次系数列是1,2,3,2,1;三项式的3次系数列是1,3,6,7,6,3,1.
(2)由杨辉三角数阵表可以得到二项式系数的性质${C}_{n+1}^{k}{=C}_{n}^{k}{+C}_{n}^{k-1}$,类似的请用三项式n次系数列中的系数表示${D}_{n+1}^{k+1}$(1≤k≤2n-1,k∈N)(无须证明);
(3)求${D}_{6}^{3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对两个变量x和y进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…(xn,yn),则下列说法中不正确的是(  )
A.由样本数据得到的回归方程$\frac{∧}{y}$=${\;}_{b}^{∧}$x+${\;}_{a}^{∧}$必过样本中心(${\;}_{x}^{-}$,${\;}_{y}^{-}$)
B.残差平方和越小的模型,拟合的效果越好
C.若变量y和x之间的相关系数为r=-0.9362,则变量和之间具有线性相关关系
D.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,若输入x=20,则输出x的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{8}$C.$\frac{3}{4}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.研究cosnα的公式,可以得到以下结论:
2cos2α=(2cosα)2-2,
2cos3α=(2cosα)3-3(2cosα),
2cos4α=(2cosα)4-4(2cosα)2+2,
2cos5α=(2cosα)5-5(2cosα)3+5(2cosα),
2cos6α=(2cosα)6-6(2cosα)4+9(2cosα)2-2,
2cos7α=(2cosα)7-7(2cosα)5+14(2cosα)3-7(2cosα),
以此类推:2cos8α=(2cosα)m+n(2cosα)p+q(2cosα)4-16(2cosα)2+r,
则m+n+p+q+r=28.

查看答案和解析>>

同步练习册答案