分析 由已知及同角三角函数基本关系式可求sinA,利用正弦定理即可计算求得b的值.
解答 解:在△ABC中,∵a=1,cosA=$\frac{1}{3}$,sinB=$\frac{2}{5}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{2\sqrt{2}}{3}$,
∴b=$\frac{asinB}{sinA}$=$\frac{1×\frac{2}{5}}{\frac{2\sqrt{2}}{3}}$=$\frac{3\sqrt{2}}{10}$.
故答案为:$\frac{3\sqrt{2}}{10}$.
点评 本题主要考查了同角三角函数基本关系式,正弦定理的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2) | B. | (-∞,2] | C. | (-∞,-3)∪(-3,2] | D. | [2,3)∪(3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 120 | B. | 72 | C. | 48 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2或5 | B. | -4或2 | C. | 2 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{2}{7}$,$\frac{3}{7}$,$\frac{6}{7}$) | B. | (-$\frac{2}{7}$,-$\frac{3}{7}$,-$\frac{6}{7}$) | ||
| C. | ($\frac{2}{7}$,-$\frac{3}{7}$,-$\frac{6}{7}$)和(-$\frac{2}{7}$,$\frac{3}{7}$,$\frac{6}{7}$) | D. | ($\frac{2}{7}$,$\frac{3}{7}$,$\frac{6}{7}$)和(-$\frac{2}{7}$,-$\frac{3}{7}$,-$\frac{6}{7}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com