精英家教网 > 高中数学 > 题目详情
16.圆x2+y2-6x-2y+9=0与圆x2+y2-2y-8=0的位置关系是相交.

分析 求出两圆的圆心坐标和半径大小,利用两点的距离公式算出两个圆心之间的距离,再比较圆心距与两圆的半径之和、半径之差的大小关系,可得两圆的位置关系.

解答 解:圆x2+y2-6x-2y+9=0的标准方程为(x-3)2+(y-1)2=1,圆心是C(3,1),半径r1=1.
x2+y2-2y-8=0的标准方程为x2+(y-1)2=9,圆心是C′(0,1),半径r2=3.
∴|C′C|=3,
∵|r1-r2|=2,r1+r2=4,
∴|r1-r2|<|C′C|<r1+r2,可得两圆相交.
故答案为:相交.

点评 本题给出两圆的方程,判断两圆的位置关系.着重考查了圆的标准方程和圆圆与圆的位置关系等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.若数列{bn}:对于任意的n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.
(1)设数列{an}满足:a1=a,对于任意的n∈N*,都有an+an+1=2n,证明:{an}为准等差数列,并求其通项公式.
(2)设(1)中的数列{an}的前n项和为Sn,试问:是否存在实数a,使得数列{Sn}有连续的两项都等于50?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知m,n,l是直线,α,β是平面,下列命题中:
①若m?α,l?β,且α∥β,则m∥l;
②若l平行于α,则α内可有无数条直线与l平行;
③若m?α,l?β,且l⊥m,则α⊥β;
④若m⊥n,n⊥l,则m∥l;
所有正确的命题序号为②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有$\frac{f(a)+f(b)}{a+b}$>0成立.
(Ⅰ)判断f(x)在[-1,1]上的单调性,并证明;
(Ⅱ)解不等式:f(2x-1)<f(1-3x);
(Ⅲ)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC,角A,B,C的对边分别为a,b,c,若bcosA=3acosB,cosC=$\frac{\sqrt{5}}{5}$,则A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算:$\sqrt{{{({3-π})}^2}}+ln{e^2}$=π-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.顶点在原点,准线为x=4的抛物线的标准方程是y2=-16x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.数列{an}的前n项和为Sn,a1=8,Sn=nan+n(n-1).
(1)求数列{an}的通项公式;
(2)设Wn=|a1|+|a2|+…+|an|,求Wn
(3)设bn=$\frac{1}{{n(12-{a_n})}}$,Tn=b1+b2+…+bn,(n∈N*),是否存在最大的整数m,使得对任意n∈N*均有Tn>$\frac{m}{32}$成立?若存在求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设方程x2+x-1=0的两个实数根分别为x1、x2,则$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=(  )
A.1B.-1C.$\sqrt{5}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

同步练习册答案