精英家教网 > 高中数学 > 题目详情
8.顶点在原点,准线为x=4的抛物线的标准方程是y2=-16x.

分析 根据准线方程,可设抛物线y2=mx,利用准线方程为x=4,即可求得m的值,进而求得抛物线的方程.

解答 解:由题意设抛物线y2=mx,则-$\frac{m}{4}$=4,∴m=-16,
∴抛物线的标准方程为y2=-16x,
故答案为:y2=-16x.

点评 考查抛物线的定义和简单的几何性质,以及待定系数法求抛物线的标准方程.体现了数形结合的思想,特别是解析几何,一定注意对几何图形的研究,以便简化计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设向量$\overrightarrow{a}$=(-1,$\sqrt{3}$),$\overrightarrow{b}$=(cosωx,sinωx),已知函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的图象关于直线x=$\frac{π}{3}$对称,其中ω∈(-$\frac{1}{2}$,$\frac{5}{2}$).
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c分别为三个内角A,B,C的对边,锐角B满足f($\frac{B}{2}$+$\frac{π}{6}$)=$\frac{2\sqrt{5}}{3}$,b=$\sqrt{2}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义侧面与底面垂直的棱柱为直棱柱,在直四棱柱ABCD-A1B1C1D1中(如图),当底面四边形ABCD满足条件BD⊥AC时,有BD1⊥A1C1
(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.圆x2+y2-6x-2y+9=0与圆x2+y2-2y-8=0的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知关于x的函数f(x)=(a+1)x2-ax+a-1,a∈R是常数.
(1)当a=1时,求不等式f(x)>0的解集;
(2)若?x∈R,都有f(x)<2x2,求a的取值范围(用集合表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,则第四个球的最高点与桌面的距离(  )
A.2+$\frac{{2\sqrt{6}}}{3}$B.$\frac{{2\sqrt{6}}}{3}$C.1+$\frac{{2\sqrt{6}}}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a>b,c>d,那么一定正确的是(  )
A.ad>bcB.ac>bdC.a-c>b-dD.a-d>b-c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若角a的终边落在一,四象限及x轴的正半轴,则角a的集合为(  )
A.{a|270°+k•360°<a<90°+k•360°,k∈Z}B.{a|-90°+k•360°<a<270°+k•360°,k∈Z}
C.{a|-90°+k•360°<a<90°+k•360°,k∈Z}D.{a|-90°+k•720°<a<90°+k•720°,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,($\sqrt{3}$+1)acosB-2bcosA=c
(1)求$\frac{tanA}{tanB}$的值;
(2)若a=$\sqrt{6}$,B=$\frac{π}{4}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案