精英家教网 > 高中数学 > 题目详情
求以椭圆
x2
16
+
y2
9
=1的两个顶点为焦点,以椭圆的焦点为顶点的双曲线方程,并求此双曲线的实轴长、虚轴长、离心率及渐近线方程.
考点:双曲线的简单性质,椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:确定椭圆的焦点、顶点坐标,可得双曲线的顶点、焦点坐标,即可求出双曲线的离心率、渐近线方程.
解答: 解:椭圆的焦点F1(-
7
,0),F2
7
,0),即为双曲线的顶点.
∵双曲线的顶点和焦点在同一直线上,
∴双曲线的焦点应为椭圆长轴的端点A1(-4,0),A2(4,0),∴c=4,a=
7

∴b=3,
故所求双曲线的方程为
x2
7
-
y2
9
=1.…(6分)
实轴长为2a=2
7
,虚轴长为2b=6,
离心率e=
c
a
=
4
7
7
,渐近线方程为y=±
3
7
7
x.…(12分)
点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

复数(1-2i)2的虚部为(  )
A、-4B、-2C、2D、2i

查看答案和解析>>

科目:高中数学 来源: 题型:

为进行科学实验,观测小球A、B在两条相交成60°角的直线型轨道上运动的情况,如图所示,运动开始前,A和B分别距O点3m和1m,后来它们同时以每分钟4m的速度各沿轨道l1、l2按箭头的方向运动.问:
(1)运动开始前,A、B的距离是多少米?
(2)几分钟后,两个小球的距离最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,设P:函数y=ax在R上递增,Q:关于x的不等式ax2-ax+1>0对?x∈R恒成立.如果P且Q为假,P或Q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程x2+y2-2x+4y-m=0.
(1)若点A(m,-2)在圆C的内部,求m的取值范围;
(2)若当m=4时①设P(x,y)为圆C上的一个动点,求(x-4)2+(y-2)2的最值;②问是否存在斜率是1的直线l,使l被圆C截得的弦AB,以AB为直径的圆经过原点,若存在,写出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A、B、C的对边分别为a、b、c,若函数f(x)=x2+mx-
1
4
为偶函数,且f(cos
B
2
)=0.
(Ⅰ)求角B的大小;
(Ⅱ)若△ABC的面积为
15
3
4
,其外接圆半径为
7
3
3
,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆中心在坐标原点,焦点在x轴上,短轴端点和焦点组成边长为5的菱形,椭圆的离心率为e=
4
5
.  
(1)求椭圆标准方程;
(2)设点p是椭圆上的动点,记p点到直线l:4x-5y+40=0的距离为d,求d的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<
π
2
)的图象与x轴的交点中,相邻两个交点之间的距离为
π
2
.若M(
3
,-2)为图象上一个最低点.
(1)求f(x)的解析式;
(2)求函数y=f(x)图象的对称轴方程和对称中心坐标;
(3)已知x∈(0,
π
2
)求函数y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,如图E、F分别是BB1,CD的中点,
(1)求证:D1F⊥平面ADE;
(2)cos<
EF
CB1

查看答案和解析>>

同步练习册答案