精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=sin2x.
(1)画出f(x)在[$\frac{π}{2}$,$\frac{3π}{2}$]上的图象;
(2)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上的最大值和最小值.

分析 (1)利用五点法进行作图,
(2)根据三角函数的最值和图象之间的关系进行求解.

解答 解:(1)

x$\frac{π}{2}$$\frac{3π}{4}$π$\frac{5π}{4}$$\frac{3π}{2}$
2xπ$\frac{3π}{2}$$\frac{5π}{2}$
y=sin2x0-1010

(2)∵-$\frac{π}{6}$≤x≤$\frac{π}{2}$,
∴-$\frac{π}{3}$≤2x≤π,则-$\frac{\sqrt{3}}{2}$≤sin 2x≤1.
所以f(x)在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上的最大值为1,最小值为-$\frac{\sqrt{3}}{2}$.

点评 本题主要考查三角函数的图象和性质,要求熟练掌握五点法作图以及三角函数的图象和性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f (x)=$\sqrt{lo{g}_{0.3}(4x-1)}$的定义域为A,m>0,函数g(x)=4 x-1(0<x≤m)的值域为B.
(1)当m=1时,求 (∁R A)∩B;
(2)是否存在实数m,使得A=B?若存在,求出m的值; 若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数$f(x)=\left\{\begin{array}{l}x-5,({x≥6})\\ f({x+2}),({x<6})\end{array}\right.$,则f(2)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=m•3x-x+3(m<0)在区间(0,1)上有零点,则m的取值范围为$-3<m<-\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=-\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数). 在以原点O为极点,x轴正半轴为极轴的极坐标中,曲线C的方程为ρ sinθtanθ=2a (a>0).
(1)求出直线l和曲线C的普通方程;
(2)若点P坐标(3,-$\sqrt{5}$),曲线C与直线l交于A,B两点,若|PA|=|PB|,求实数a值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆mx2+5y2=5m(m>0)的离心率为$e=\frac{{\sqrt{10}}}{5}$,求m的值,并求椭圆的长轴和短轴的长、焦点坐标、顶点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}满足a1=2,an+1-2an=0,数列{bn}的通项公式满足关系式an•bn=(-1)n(n∈N*),则bn=$(-\frac{1}{2})^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若cos(π+α)=-$\frac{1}{2}$,$\frac{3}{2}$π<α<2π,则sin(3π-α)等于-$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等比数列{an}中,已知a3=2,a7=6,则公比q=$±\root{4}{3}$,a15=54,a20=±162$\root{4}{3}$.

查看答案和解析>>

同步练习册答案