精英家教网 > 高中数学 > 题目详情
(本小题满分10分)
如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G。

(1)求证:圆心O在直线AD上;
(2)求证:点C是线段GD的中点。
(1) 
又△ABC是等腰三角形,所以AD是∠CAB的角分线
∴圆心O在直线AD上。(2))连接DF,由(I)知,DH是⊙O的直径, ∴∠DFH=90°,∴∠FDH+∠FHD=90°,又∠G+∠FHD=90°,∴∠FDH=∠G,又⊙O与AC相切于点F ,∴∠AFH=∠GCF=∠FHD  ∴∠GCF=∠G,∴CG=CF=CD,∴点C是线段GD的中点。

试题分析:(I)证明:

 
又△ABC是等腰三角形,所以AD是∠CAB的角分线
∴圆心O在直线AD上。……………5分
(II)连接DF,由(I)知,DH是⊙O的直径,
∴∠DFH=90°,∴∠FDH+∠FHD=90°
又∠G+∠FHD=90°,∴∠FDH=∠G
又⊙O与AC相切于点F 
∴∠AFH=∠GCF=∠FHD  ∴∠GCF=∠G
∴CG=CF=CD
∴点C是线段GD的中点。   ………………10分
点评:本题利用了切线的性质,四边形的内角和为360度及圆周角定理求解.属于基础题型。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四边形是☉的内接四边形,不经过点平分,经过点的直线分别交的延长线于点,且,证明:

(1)
(2)是☉的切线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

选修4—1:几何证明选讲
如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD//AP,AD、BC相交于 E点,F为CE上一点,且

(1)求证:A、P、D、F四点共圆;
(2)若AE·ED=24,DE=EB=4,求PA的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D,若PE=PA,,PD=1,BD=8,求线段BC的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
如图,已知与圆相切于点,经过点的割线交圆于点,的平分线分别交于点

(Ⅰ)证明:=
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,的外接圆的圆心为,, 则等于(  )
A.B.C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知△ABC内接于圆O,点D在OC 的延长线上,AD是⊙0的切线,若∠B=30°,AC=2,则OD的长为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图1,在平面直角坐标系中,边长为1的正方形OABC的顶点B在轴的正半轴上,O为坐标原点.现将正方形OABC绕O点按顺时针方向旋转.
 (1)当点A第一次落到轴正半轴上时,求边BC在旋转过程中所扫过的面积;
 (2)若线段AB与轴的交点为M(如图2),线段BC与直线的交点为N.设的周长为,在正方形OABC旋转的过程中值是否有改变?并说明你的结论;
(3)设旋转角为,当为何值时,的面积最小?求出这个最小值, 并求出此时△BMN的内切圆半径.

      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,⊙O是边长为2的等边△ABC的内切圆,则⊙O的半径为         

查看答案和解析>>

同步练习册答案