精英家教网 > 高中数学 > 题目详情
15.“x>0”是“x2>0”的充分不必要条件.(填“充分必要条件”)

分析 由x2>0?x>0或x<0,即可判断出结论.

解答 解:由x2>0?x>0或x<0,
∴“x>0”是“x2>0”的充分不必要条件.
故答案为:充分不必要条件.

点评 本题考查了不等式的解法、充要条件的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.a,b中至少有一个不为零的充要条件是(  )
A.ab=0B.ab>0C.a2+b2=0D.a2+b2>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.三条不同直线的a,b,c,其中正确的命题个数是(  )
(1)若a∥b,b∥c,则a∥c;
(2)若a⊥b,c⊥b,a∥c;
(3)若a∥c,c⊥b,则b⊥a;
(4)若a与b,a与c都是异面直线,则b与c也是异面直线.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线y=xlnx上点P处的切线平行于直线2x-y+1=0,则点P的坐标是(  )
A.(1,e)B.(e,e)C.(e,1)D.(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设U=R,A={x|x2-3x-10>0},B={x|a+1≤x≤2a-1},且B⊆∁UA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直角的三边长a,b,c,满足a≤b<c
(1)在a,b之间插入2016个数,使这2018个数构成以a为首项的等差数列{an},且它们的和为2018,求斜边的最小值;
(2)已知a,b,c均为正整数,且a,b,c成等差数列,将满足条件的三角形的面积从小到大排成一列S1,S2,S3,…,Sn,且${T_n}=-{S_1}+{S_2}-{S_3}+…+{(-1)^n}{S_n}$,求满足不等式${T_{2n}}>6•{2^{n+1}}$的所有n的值;
(3)已知a,b,c成等比数列,若数列{Xn}满足$\sqrt{5}{X_n}={({\frac{c}{a}})^n}-{({-\frac{a}{c}})^n}\;(n∈{N^*})$,证明:数列$\left\{{\sqrt{X_n}}\right\}$中的任意连续三项为边长均可以构成直角三角形,且Xn是正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知三棱柱ABC-A1B1C1中,平面BCC1B1⊥底面ABC,BB1⊥AC,底面ABC是边长为2的等边三角形,AA1=3,E、F分别在棱AA1,CC1上,且AE=C1F=2.
(Ⅰ)求证:BB1⊥底面ABC;
(Ⅱ)求棱锥A1-BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正方体ABCD-A1B1C1D1,则A1C1与B1C所成的角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x2-4x,若关于x的方程|f(x)|+|f(a-x)|-t=0有四个不同的实根,且所有实根之和为4,则实数t的取值范围是(  )
A.(2,4)B.(4,6)C.(2,6)D.(6,12)

查看答案和解析>>

同步练习册答案