分析 (Ⅰ)由已知得a1=-$\frac{1}{2}$,an=Sn-Sn-1=3an+1-(3an-1+1)=3an-3an-1,数列{an}是首项为-$\frac{1}{2}$,公比为$\frac{3}{2}$的等比数列,由此能求出an.
(Ⅱ)利用作差法,an+1-an=-$\frac{1}{2}$•($\frac{3}{2}$)n-1<0,即可判断.
解答 解:(Ⅰ)∵Sn=3an+1,
∴n=1时,S1=a1=3a1+1,解得a1=-$\frac{1}{2}$,
n≥2时,an=Sn-Sn-1=3an+1-(3an-1+1)=3an-3an-1,
∴3an-1=2an,即$\frac{{a}_{n}}{{a}_{n-1}}$,
∴数列{an}是首项为-$\frac{1}{2}$,公比为$\frac{3}{2}$的等比数列,
∴an=-$\frac{1}{2}$•($\frac{3}{2}$)n-1.
(Ⅱ)∵an+1-an=-$\frac{1}{2}$•($\frac{3}{2}$)n+$\frac{1}{2}$•($\frac{3}{2}$)n-1=-$\frac{1}{2}$•($\frac{3}{2}$)n-1<0,
∴{an}是递减数列
点评 本题考查数列的通项公式的求法以及数列的单调性,是中档题,解题时要认真审题,注意等比数列的性质的合理运用
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{π}$ | B. | $\frac{π}{2}$ | C. | π-2 | D. | $\frac{2}{π}$或$\frac{π}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com