精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若函数在定义域内单调递增,求实数 的取值范围,

(2)当时,关于的方程在[1,4]上恰有两个不相等的实数根,

求实数的取值范围。

【答案】(1) (﹣∞,﹣1];(2) ln2﹣2<b≤﹣

【解析】试题分析:(1)对函数f(x)进行求导,令导数大于等于0在x0上恒成立即可.

(2)将a的值代入整理成方程的形式,然后转化为函数考虑其图象与x轴的交点的问题.

试题解析:

(1)f′(x)=﹣,(x>0)

依题意f'(x)≥0在x>0时恒成立,即ax2+2x﹣1≤0在x>0恒成立.

则a≤=( ﹣1)2﹣1在x>0恒成立,

即a≤((﹣1)2﹣1)min(x>0)

当x=1时,(﹣1)2﹣1取最小值﹣1,

∴a的取值范围是(﹣∞,﹣1].

(2)a=﹣,f(x)=﹣x+b,

x2x+lnx﹣b=0

设g(x)=x2x+lnx﹣b(x>0)则g'(x)=

列表:

X

(0,1)

1

(1,2)

2

(2,4)

g′(x)

+

0

0

+

g(x)

极大值

极小值

∴g(x)极小值=g(2)=ln2﹣b﹣2,g(x)极大值=g(1)=﹣b﹣

又g(4)=2ln2﹣b﹣2

∵方程g(x)=0在[1,4]上恰有两个不相等的实数根.

,得:ln2﹣2<b≤﹣

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地方政府要将一块如图所示的直角梯形ABCD空地改建为健身娱乐广场.已知AD//BC, 百米, 百米,广场入口P在AB上,且,根据规划,过点P铺设两条相互垂直的笔直小路PM,PN(小路的宽度不计),点M,N分别在边AD,BC上(包含端点),区域拟建为跳舞健身广场, 区域拟建为儿童乐园,其它区域铺设绿化草坪,设.

(1)求绿化草坪面积的最大值;

(2)现拟将两条小路PNM,PN进行不同风格的美化,PM小路的美化费用为每百米1万元,PN小路的美化费用为每百米2万元,试确定M,N的位置,使得小路PM,PN的美化总费用最低,并求出最小费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且对任意都有:

;②

以下三个结论:;②;③

其中正确的个数为( ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网购已经成为一种时尚,商家为了鼓励消费,购买时在店铺领取优惠券,买后给予好评返还现金等促销手段.经统计,近五年某店铺用于促销的费用(万元)与当年度该店铺的销售收人(万元)的数据如下表:

年份

2013年

2014年

2015年

2016年

2017年

促销费用

销售收入

(1)请根据上表提供的数据,用最小二乘法求出/span>关于的线性回归方

(2)2018年度该店铺预测销售收人至少达到万元,则该店铺至少准备投入多少万元的促销费?

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处取得极值.

(1)求的值;

(2)若有极大值,求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】半径小于的圆经过点,圆心在直线上,并且与直线相交所得的弦长为

)求圆的方程.

已知点,动点到圆的切线长等于到的距离,求的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 两个小岛相距海里,岛在岛的正南方,现在甲船从岛出发,以海里/时的速度向岛行驶,而乙船同时以海里/时的速度离开岛向南偏东方向行驶,行驶多少时间后,两船相距最近?并求出两船的最近距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的值;

(2)若函数在区间是单调递增函数,求实数的取值范围;

(3)若关于的方程在区间内有两个实数根,求实数的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表。

A地区用户满意度评分的频率分布直方图

B地区用户满意度评分的频数分布表

(Ⅰ)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);

(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:

满意度评分

低于70分

70分到89分

不低于90分

满意度等级

不满意

满意

非常满意

估计哪个地区的满意度等级为不满意的概率大?说明理由

查看答案和解析>>

同步练习册答案