精英家教网 > 高中数学 > 题目详情
16.如图,已知在等腰梯形ABCD中,AB=4,AB∥CD,∠BAD=45°,E,F,G分别是AB,BC,CD的中点,若$\overrightarrow{EF}$在$\overrightarrow{AG}$方向上的投影为$\frac{7}{10}\sqrt{4+\frac{1}{2}A{D^2}}$,则$\frac{{|\overrightarrow{AB}|}}{{|\overrightarrow{CD}|}}$=(  )
A.1B.2C.3D.4

分析 由题意建立平面直角坐标系,从而利用平面向量的坐标表示化简即可.

解答 解:建立如右图所示的平面直角坐标系,

∵,∠BAD=45°,∴设D(x,x),(x>0),
则C(4-x,x),G(2,x),E(2,0),F($\frac{8-x}{2}$,$\frac{x}{2}$),
故$\overrightarrow{EF}$=(2-$\frac{x}{2}$,$\frac{x}{2}$),
所以$\overrightarrow{EF}$在$\overrightarrow{AG}$方向上的投影为
$\frac{\overrightarrow{EF}•\overrightarrow{AG}}{|\overrightarrow{AG}|}$=$\frac{2(2-\frac{x}{2})+x\frac{x}{2}}{\sqrt{4+{x}^{2}}}$=$\frac{7}{10}\sqrt{4+\frac{1}{2}A{D^2}}$,
即$\frac{2(2-\frac{x}{2})+x\frac{x}{2}}{\sqrt{4+{x}^{2}}}$=$\frac{7}{10}$$\sqrt{4+\frac{1}{2}({x}^{2}+{x}^{2})}$,
解得,x=1;
故CD=4-2=2,
故$\frac{{|\overrightarrow{AB}|}}{{|\overrightarrow{CD}|}}$=2,
故选:B.

点评 本题考查了平面向量的坐标运算、平面向量的投影等基础知识,同时考查了坐标法、方程思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点.
(1)当a=2b,点P在双曲线上,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=2时,求双曲线方程.
(2)已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1具有如下性质,若x=t交双曲线于P,Q,A1,A2为双曲线顶点,则A1P,A2Q交点的轨迹是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1.
试对椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1写出具有类似特征的性质,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A、B分别是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右顶点,离心率为$\frac{1}{2}$,右焦点与抛物线y2=4x的焦点F重合.
(1)求椭圆C的方程;
(2)已知点P是椭圆C上异于A、B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q,证明:Q、P、B三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且椭圆上的点到右焦点F的最大距离为3
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F的直线l交椭圆C于A,B两点,定点G(4,0),求△ABG面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{6}}}{3}$,焦距为$4\sqrt{2}$,抛物线C2:x2=2py(p>0)的焦点F是椭圆C1的顶点.
(Ⅰ)求C1与C2的标准方程;
(Ⅱ)C1上不同于F的两点P,Q满足$\overrightarrow{FP}•\overrightarrow{FQ}=0$,且直线PQ与C2相切,求△FPQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.记min|a,b|为a、b两数的最小值,当正数x,y变化时,令t=min|2x+y,$\frac{2y}{{x}^{2}+2{y}^{2}}$|,则t的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若复数z满足关系$z•\overline{z}$=1,则z对应的复平面的点的轨迹是(  )
A.B.椭圆C.双曲线D.直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,在边长为2的正方形ABCD中,点Q边CD上一个动点,$\overrightarrow{CQ}$=λ$\overrightarrow{QD}$,点P为线段BQ(含端点)上一个动点,若λ=1,则$\overrightarrow{PA}$•$\overrightarrow{PD}$的取值范围为[$\frac{4}{5}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xlnx+a.
(1)若函数y=f(x)在x=e处的切线方程为y=2x,求实数a的值;
(2)设m>0,当x∈[m,2m]时,求f(x)的最小值;
(3)求证:${?_n}∈{N_+},{e^{1+\frac{1}{n}}}>{(1+\frac{1}{n})^e}$.

查看答案和解析>>

同步练习册答案