分析 由新定义可得t≤2x+y,t≤$\frac{2y}{{x}^{2}+2{y}^{2}}$,(x,y>0),由两式相乘,结合重要不等式,可得t的最大值.
解答 解:由t=min|2x+y,$\frac{2y}{{x}^{2}+2{y}^{2}}$|,可得
t≤2x+y,t≤$\frac{2y}{{x}^{2}+2{y}^{2}}$,(x,y>0),
即有t2≤$\frac{4xy+2{y}^{2}}{{x}^{2}+2{y}^{2}}$,
由$\frac{4xy+2{y}^{2}}{{x}^{2}+2{y}^{2}}$=$\frac{2(2xy+{y}^{2})}{{x}^{2}+2{y}^{2}}$≤$\frac{2({x}^{2}+{y}^{2}+{y}^{2})}{{x}^{2}+2{y}^{2}}$=2,
可得t2≤2,解得0<t≤$\sqrt{2}$.
可得t的最大值为$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题考查新定义的理解和运用,考查最值的求法,注意运用不等式的性质和基本不等式,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$+1 | B. | 2 | C. | 2$\sqrt{2}$+2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com