9£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬ÀëÐÄÂÊe=$\frac{\sqrt{2}}{2}$£¬M£¨x0£¬y0£©ÊÇÍÖÔ²ÉϵÄÈÎÒ»µã£¬´ÓÔ­µãOÏòÔ²M£º£¨x-x0£©2+£¨y-y0£©2=2×÷Á½ÌõÇÐÏߣ¬·Ö±ð½»ÍÖÔ²ÓÚµãP£¬Q£®
£¨¢ñ£©Èô¹ýµã£¨0£¬-b£©£¬£¨a£¬0£©µÄÖ±ÏßÓëÔ­µãµÄ¾àÀëΪ$\sqrt{2}$£¬ÇóÍÖÔ²·½³Ì£»
£¨¢ò£©ÔÚ£¨¢ñ£©µÄÌõ¼þÏ£¬ÈôÖ±ÏßOP£¬OQµÄбÂÊ´æÔÚ£¬²¢¼ÇΪk1£¬k2£®ÊÔÎÊk1k2ÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö¸ÃÖµ£»Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÔËÓÃÀëÐÄÂʹ«Ê½£¬ÒÔ¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬½áºÏÍÖÔ²»ù±¾Á¿µÄ¹ØÏµ£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©ÓÉÖ±ÏßOP£ºy=k1x£¬OQ£ºy=k2x£¬ÓëÔ²MÏàÇУ¬ÔËÓÃÖ±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£ºd=r£¬»¯¼òÕûÀí£¬½áºÏ¶þ´Î·½³ÌµÄΤ´ï¶¨Àí£¬ÔÙÓɵãÂú×ãÍÖÔ²·½³Ì£¬¼ÆËã¼´¿ÉµÃµ½¶¨Öµ£®

½â´ð ½â£º£¨¢ñ£©ÒòΪÀëÐÄÂÊ$e=\frac{{\sqrt{2}}}{2}$£¬ËùÒÔ$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬¶øc2=a2-b2£¬
ËùÒÔ$\frac{{{a^2}-{b^2}}}{a^2}=\frac{1}{2}$£¬¼´a2=2b2¢Ù
Éè¾­¹ýµã£¨0£¬-b£©£¬£¨a£¬0£©µÄÖ±Ïß·½³ÌΪ$\frac{x}{a}+\frac{y}{-b}=1$£¬
¼´bx-ay-ab=0£¬
ÒòΪֱÏßÓëÔ­µãµÄ¾àÀëΪ$\sqrt{2}$£¬
ËùÒÔ$\frac{|ab|}{{\sqrt{{a^2}+{b^2}}}}=\sqrt{2}$£¬ÕûÀíµÃ£º$\frac{{{a^2}{b^2}}}{{{a^2}+{b^2}}}=2$¢Ú
ÓÉ¢Ù¢ÚµÃ$\left\{\begin{array}{l}{a^2}=6\\{b^2}=3\end{array}\right.$£¬
ËùÒÔÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{6}+\frac{y^2}{3}=1$£»
£¨¢ò£©ÒòΪֱÏßOP£ºy=k1x£¬OQ£ºy=k2x£¬ÓëÔ²MÏàÇУ¬
ÓÉÖ±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£ºd=r£¬¿ÉµÃ$\frac{{|{k_1}{x_0}-{y_0}|}}{{\sqrt{1+{k_1}^2}}}=\frac{{|{k_2}{x_0}-{y_0}|}}{{\sqrt{1+{k_2}^2}}}=\sqrt{2}$£¬
ƽ·½ÕûÀí£¬¿ÉµÃ${k_1}^2£¨2-{x_0}^2£©+2{k_1}{x_0}{y_0}+2-{y_0}^2=0$£¬
${k_2}^2£¨2-{x_0}^2£©+2{k_2}{x_0}{y_0}+2-{y_0}^2=0$£¬
ËùÒÔk1£¬k2ÊÇ·½³Ì${k^2}£¨2-2{x_0}^2£©+2k{x_0}{y_0}+2-{y_0}^2=0$µÄÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬
${k_1}{k_2}=\frac{{2-{y_0}^2}}{{2-{x_0}^2}}$£¬
ÒòΪµãR£¨x0£¬y0£©ÔÚÍÖÔ²CÉÏ£¬ËùÒÔ$\frac{{{x_0}^2}}{6}+\frac{{{y_0}^2}}{3}=1$£¬
¼´${y_0}^2=3£¨1-\frac{{{x_0}^2}}{6}£©=3-\frac{1}{2}x_0^2$£¬
ËùÒÔ${k_1}{k_2}=\frac{{2-3+\frac{1}{2}x_0^2}}{2-x_0^2}=-\frac{1}{2}$Ϊ¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍµãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÖ±ÏßµÄбÂÊÖ®»ýΪ¶¨ÖµµÄÎÊÌ⣬עÒâÔËÓÃÖ±ÏߺÍÔ²ÏàÇеÄÌõ¼þ£ºd=r£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®É躯Êýf£¨x£©=ax1nx+be£¨ÆäÖÐa£¬b¡ÊR£¬eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£¬e=2.71828¡­£©ÇúÏßy=f£¨x£©Ôڵ㣨e£¬f£¨e£©£©´¦µÄÇÐÏß·½³ÌΪy=2x£¬g£¨x£©=$\frac{2x}{{e}^{x}}$-$\frac{3}{e}$+e£®
£¨1£©Çóa£¬b£»
£¨2£©Ö¤Ã÷£º¶ÔÈÎÒâx1£¬x2¡Ê£¨0£¬+¡Þ£©£¬f£¨x1£©¡Ýg£¨x2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÈôÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1Óë$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊ·Ö±ðΪe1£¬e2£¬ÇÒe1+e2=$\sqrt{3}$£¬Ôòe1e2=£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}}{2}$B£®$\frac{3}{4}$C£®$\frac{1}{2}$D£®$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÍÖÔ²$E£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$¾­¹ýµã$£¨{2\sqrt{2}£¬2}£©$£¬ÇÒÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬F1£¬F2ÊÇÍÖÔ²EµÄ×ó£¬ÓÒ½¹µã
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÈôµãA£¬BÊÇÍÖÔ²EÉϹØÓÚyÖá¶Ô³ÆÁ½µã£¨A£¬B²»Êdz¤ÖáµÄ¶Ëµã£©£¬µãPÊÇÍÖÔ²EÉÏÒìÓÚA£¬BµÄÒ»µã£¬ÇÒÖ±ÏßPA£¬PB·Ö±ð½»yÖáÓÚµãM£¬N£¬ÇóÖ¤£ºÖ±ÏßMF1ÓëÖ±ÏßNF2µÄ½»µãGÔÚ¶¨Ô²ÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÇÒÍÖÔ²Éϵĵ㵽ÓÒ½¹µãFµÄ×î´ó¾àÀëΪ3
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Éè¹ýµãFµÄÖ±Ïßl½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬¶¨µãG£¨4£¬0£©£¬Çó¡÷ABGÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬µãF1£¬F2·Ö±ðÊÇÍÖÔ²CµÄ×ó¡¢ÓÒ½¹µã£¬ÒÔÔ­µãΪԲÐÄ£¬ÍÖÔ²CµÄ¶Ì°ëÖáΪ°ë¾¶µÄÔ²ÓëÖ±Ïßx-y+$\sqrt{6}$=0ÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Èô¹ýµãF2µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚM£¬NÁ½µã£¬Çóʹ¡÷F1MNÃæ»ý×î´óʱֱÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¼Çmin|a£¬b|Ϊa¡¢bÁ½ÊýµÄ×îСֵ£¬µ±ÕýÊýx£¬y±ä»¯Ê±£¬Áît=min|2x+y£¬$\frac{2y}{{x}^{2}+2{y}^{2}}$|£¬ÔòtµÄ×î´óֵΪ$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ä³Ð£¸ßÒ»¡¢¸ß¶þ¡¢¸ßÈý£¬Èý¸öÄê¼¶µÄѧÉúÈËÊý·Ö±ðΪ2000ÈË¡¢1500È˺Í1000ÈË£¬ÏÖ²ÉÓð´Äê¼¶·Ö²ã³éÑùµÄ·½·¨Á˽âѧÉúµÄÊÓÁ¦×´¿ö£¬ÒÑÖª¸ßÒ»Äê¼¶³é²éÁË60ÈË£¬ÔòÕâ´Îµ÷²éÈý¸öÄê¼¶¹²³é²éÁË135ÈË£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªÁ½µãA£¨0£¬2£©¡¢B£¨3£¬-1£©£¬ÉèÏòÁ¿$\overrightarrow a=\overrightarrow{AB}$£¬$\overrightarrow{b}$=£¨1£¬m£©£¬Èô$\overrightarrow{a}$¡Í$\overrightarrow{b}$£¬ÄÇôʵÊým=1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸