精英家教网 > 高中数学 > 题目详情
14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率为$\frac{1}{2}$,点F1,F2分别是椭圆C的左、右焦点,以原点为圆心,椭圆C的短半轴为半径的圆与直线x-y+$\sqrt{6}$=0相切.
(1)求椭圆C的方程;
(2)若过点F2的直线l与椭圆C相交于M,N两点,求使△F1MN面积最大时直线l的方程.

分析 (1)由离心率为$\frac{1}{2}$,得$\frac{c}{a}$=$\frac{1}{2}$,根据圆与直线相切可得b=$\frac{\sqrt{6}}{\sqrt{2}}$=$\sqrt{3}$,再由a2=b2+c2联立可解得a,b,即可得到椭圆方程;
(2)设直线l的方程为x=my+1,M(x1,y1),N(x2,y2),联立直线l方程与椭圆方程消掉x得y的二次方程,运用韦达定理,由S${\;}_{△MN{F}_{1}}$=$\frac{1}{2}$|F1F2|•|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$,代入韦达定理即可得关于m的函数表达式,恰当变形后,利用函数单调性求得其最大值及相应m值.

解答 解:(1)由题意得e=$\frac{c}{a}$=$\frac{1}{2}$,a2-b2=c2
由圆x2+y2=b2与直线x-y+$\sqrt{6}$=0相切,可得
b=$\frac{\sqrt{6}}{\sqrt{2}}$=$\sqrt{3}$,解得a=2,c=1,
所以椭圆C的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)由题意可设直线l的方程为x=my+1,
设M(x1,y1),N(x2,y2),
则点M、N的坐标是方程组$\left\{\begin{array}{l}{x=my+1}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$的两组解,
消掉x得,(3m2+4)y2+6my-9=0,
所以△=36m2+36(3m2+4)>0恒成立,
y1+y2=-$\frac{6m}{3{m}^{2}+4}$,y1y2=-$\frac{9}{3{m}^{2}+4}$,
所以S${\;}_{△MN{F}_{1}}$=$\frac{1}{2}$|F1F2|•|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{\frac{36{m}^{2}}{(3{m}^{2}+4)^{2}}+\frac{36}{3{m}^{2}+4}}$=$\frac{12\sqrt{{m}^{2}+1}}{3{m}^{2}+4}$=$\frac{12}{\frac{3{m}^{2}+4}{\sqrt{{m}^{2}+1}}}$=$\frac{12}{3\sqrt{{m}^{2}+1}+\frac{1}{\sqrt{{m}^{2}+1}}}$,
设t=$\sqrt{{m}^{2}+1}$(t≥1),由y=3t+$\frac{1}{t}$的导数3-$\frac{1}{{t}^{2}}$>0,
可得函数y在t≥1递增,即有y≥4,
S${\;}_{△MN{F}_{1}}$≤3(当且仅当m=0时取等号),
所以当m=0时,△F1MN的面积取最大值,此时直线l的方程为x=1.

点评 本题考查直线方程、椭圆方程及直线和椭圆、圆的位置关系,考查三角形面积公式,考查学生分析解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.双曲线的离心率e=$\sqrt{2}$,经过M(-5,3)的方程是(  )
A.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{16}$=1C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{9}$=1D.$\frac{{y}^{2}}{25}$-$\frac{{x}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,A,B,C,D四点共圆,BC,AD的延长线交于点E,点F在BA的延长线上,
(1)若$\frac{EC}{EB}=\frac{1}{4},\frac{ED}{EA}=\frac{1}{2},求\frac{DC}{AB}$的值;
(2)若EF2=FA•FB,证明:EF∥CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,过F点的直线l与椭圆C相交于A,B两点,直线l的倾斜角为$\frac{π}{3}$,|AF|=2|FB|.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若|AF|=$\frac{5}{2}$,求椭圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,D为椭圆C上一点,当△ABD面积取得最大值时,求D点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),离心率e=$\frac{\sqrt{2}}{2}$,M(x0,y0)是椭圆上的任一点,从原点O向圆M:(x-x02+(y-y02=2作两条切线,分别交椭圆于点P,Q.
(Ⅰ)若过点(0,-b),(a,0)的直线与原点的距离为$\sqrt{2}$,求椭圆方程;
(Ⅱ)在(Ⅰ)的条件下,若直线OP,OQ的斜率存在,并记为k1,k2.试问k1k2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若变量x,y满足$\left\{\begin{array}{l}{x≥2}\\{y≥2}\\{x+y≤8}\end{array}\right.$z=$\frac{x}{a}$+$\frac{y}{b}$(a≥b>0)的最大值2,则有(  )
A.ab-3a-b=0B.ab-a-3b=0C.ab-a-b=0D.ab+a-b=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知抛物线C1:y2=4x的焦点F恰好是椭圆C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点,且两条曲线C1与C2交点的连线过点F,则椭圆C2的长轴长等于(  )
A.$\sqrt{2}$+1B.2C.2$\sqrt{2}$+2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知z(2+i)=1+ai,a∈R,i为虚数单位,若z为纯虚数,则a=(  )
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.二项式(x-2)5展开式中x的系数为(  )
A.5B.16C.80D.-80

查看答案和解析>>

同步练习册答案