| A. | ab-3a-b=0 | B. | ab-a-3b=0 | C. | ab-a-b=0 | D. | ab+a-b=0 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求出目标函数的取得最大值时的最优解,即可得到结论.
解答
解:由z=$\frac{x}{a}$+$\frac{y}{b}$得y=-$\frac{b}{a}$x+bz,
作出不等式组对应的平面区域如图:
平移直线y=-$\frac{b}{a}$x+bz,
∵a≥b>0,∴斜率k=-$\frac{b}{a}$∈[-1,0),
由图象知当直线经过点A时,直线的截距最大,此时z最大,
由$\left\{\begin{array}{l}{x=2}\\{x+y=8}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=6}\end{array}\right.$,即A(2,6),
此时z═$\frac{x}{a}$+$\frac{y}{b}$=2,即$\frac{2}{a}+\frac{6}{b}=2$,
即ab-3a-b=0,
故选:A.
点评 本题主要考查线性规划的应用,利用数形结合以及目标函数的几何意义是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 8 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-ln2 | B. | ln2 | C. | 2$\sqrt{e}$-3 | D. | e2-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\sqrt{10},0}),({-\sqrt{10},0})$ | B. | $({0,\sqrt{10}}),({0,-\sqrt{10}})$ | C. | (0,3),(0,-3) | D. | (3,0),(-3,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com