精英家教网 > 高中数学 > 题目详情
9.双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1上一点P到一个焦点的距离为2,则点P到另一焦点的距离为(  )
A.6B.8C.10D.12

分析 求出双曲线的a=4,运用双曲线的定义,解方程可得所求值,注意舍去一个.

解答 解:双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的a=4,
设双曲线的焦点为F1,F2
由题意可设|PF1|=2,
由双曲线的定义可得||PF1|-|PF2||=2a=8,
即有|2-|PF2||=8,
解得|PF2|=10(-6舍去),
故选:C.

点评 本题考查双曲线的定义的运用,注意运用方程的思想,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若${(\frac{x}{a}+\frac{1}{{\root{3}{x}}})^8}$的展开式中常数项为1,则实数a=(  )
A.$-2\sqrt{7}$B.$\sqrt{7}$C.$±2\sqrt{7}$D.$±\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等比数列{an}中,a2=2,又a2,a3+1,a4成等差数列,数列{bn}的前n项和为Sn,且$\frac{1}{{S}_{n}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,则a8+b8=(  )
A.311B.272C.144D.80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等差数列{an}中,a4,a10是方程2x2-x-7=0的两根,则a7等于(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{7}{2}$D.-$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.双曲线的离心率e=$\sqrt{2}$,经过M(-5,3)的方程是(  )
A.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{16}$=1C.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{9}$=1D.$\frac{{y}^{2}}{25}$-$\frac{{x}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.点P(x0,y0)为双曲线C:$\frac{x^2}{4}-\frac{y^2}{9}$=1上一点,B1、B2为C的虚轴顶点,$\overrightarrow{P{B_1}}•\overrightarrow{P{B_2}}$<8,则x0的范围是(  )
A.$(-\frac{{6\sqrt{26}}}{13}\;,\;-2]∪[2\;,\;\frac{{6\sqrt{26}}}{13})$B.$(-\frac{{6\sqrt{26}}}{13}\;,\;-2)∪(2\;,\;\frac{{6\sqrt{26}}}{13})$
C.$(-2\sqrt{2}\;,\;-2]∪[2\;,\;2\sqrt{2})$D.$(-2\sqrt{2}\;,\;-2)∪(2\;,\;2\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆锥曲线$\frac{x^2}{m}$+y2=1的离心率为$\sqrt{7}$,则m=(  )
A.$\frac{1}{6}$B.6C.-$\frac{1}{6}$D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系xoy中,双曲线${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的渐近线与椭圆${C_2}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$交于第一、二象限内的两点分别为A,B,若△OAB的外接圆的圆心为$({0,\sqrt{2}a})$,则$\frac{a}{b}$的值为2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若变量x,y满足$\left\{\begin{array}{l}{x≥2}\\{y≥2}\\{x+y≤8}\end{array}\right.$z=$\frac{x}{a}$+$\frac{y}{b}$(a≥b>0)的最大值2,则有(  )
A.ab-3a-b=0B.ab-a-3b=0C.ab-a-b=0D.ab+a-b=0

查看答案和解析>>

同步练习册答案