精英家教网 > 高中数学 > 题目详情
14.等差数列{an}中,a4,a10是方程2x2-x-7=0的两根,则a7等于(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{7}{2}$D.-$\frac{7}{4}$

分析 利用等差数列性质、韦达定理求解.

解答 解:∵等差数列{an}中,a4,a10是方程2x2-x-7=0的两根,
∴${a}_{4}+{a}_{10}=2{a}_{7}=\frac{1}{2}$,
∴a7=$\frac{1}{4}$.
故选:B.

点评 本题考查等差数列的第7项的求法,是基础题,解题时要认真审题,注意等差数列性质、韦达定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.(1-x24($\frac{x+1}{x}$)5的展开式中$\frac{1}{x}$的系数为-29.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义:若一个正整数表示为两个连续偶数的平方差,那么这个正整数称为“神秘数”,例如12=42-22,12就是“神秘数”.(1)设“神秘数”构成数列{an},求数列{an}的通项公式;
(2)在区间[1,200]内求所有“神秘数”之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(2$\sqrt{3}$,2),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知△ABC中,内角A,B,C的对边分别为a,b,c.
(1)若$\frac{a}{cosA}$=$\frac{b}{cosB}$,且sin2A(2-cosC)=cos2B+$\frac{1}{2}$,求角C的大小;
(2)若△ABC为锐角三角形,且A=$\frac{π}{4}$,a=2,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点到焦点的距离为2,离心率为$\frac{\sqrt{3}}{2}$.
(1)求a,b的值,
(2)设P是椭圆C长轴上的一个动点,过点P作斜率为1的直线交椭圆于A,B两点,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1上一点P到一个焦点的距离为2,则点P到另一焦点的距离为(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,AB是圆O的直径,C,F为圆O上的点,CA是∠BAF的角平分线,CD与圆O切于点C,且交AF的延长线于点D,CM⊥AB,垂足为点M.
(1)求证:DF=BM;
(2)若圆O的半径为1,∠BAC=60°,试求线段CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过A($\sqrt{2}$,0),离心率为$\frac{\sqrt{2}}{2}$,O为坐标原点.
(1)求椭圆C的方程;
(2)设P,Q,R椭圆上三点,OQ与PR交于M点,且$\overrightarrow{OQ}$=3$\overrightarrow{OM}$,当PR中点恰为点M时,判断△OPR的面积是否为常数,并说明理由.

查看答案和解析>>

同步练习册答案