分析 由已知利用同角三角函数基本关系式可求cosα,tanα的值,由$tan(α-β)=-\frac{1}{3}$利用两角差的正切函数公式即可解得tanβ的值,利用诱导公式,二倍角的余弦函数公式,同角三角函数基本关系式化简所求即可计算求值.
解答 解:∵$0<α<\frac{π}{2}$,$sinα=\frac{4}{5}$,
∴cos$α=\sqrt{1-si{n}^{2}α}$=$\frac{3}{5}$,tanα=$\frac{sinα}{cosα}$=$\frac{4}{3}$,
∵$tan(α-β)=-\frac{1}{3}$=$\frac{tanα-tanβ}{1+tanαtanβ}$=$\frac{\frac{4}{3}-tanβ}{1+\frac{4}{3}tanβ}$,
∴解得:tanβ=3,
∴$\frac{{sin(2β-\frac{π}{2})•sin(β+π)}}{{\sqrt{2}cos(β+\frac{π}{4})}}$=$\frac{cos2β•sinβ}{cosβ-sinβ}$=$\frac{\frac{co{s}^{2}β-si{n}^{2}β}{co{s}^{2}β+si{n}^{2}β}•sinβ}{cosβ-sinβ}$=$\frac{\frac{1-ta{n}^{2}β}{1+ta{n}^{2}β}•tanβ}{1-tanβ}$=$\frac{\frac{1-9}{1+9}×3}{1-3}$=$\frac{6}{5}$.
故答案为:$3\;,\;\;\frac{6}{5}$.
点评 本题主要考查了两角差的正切函数公式,诱导公式,二倍角的余弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S1=$\frac{1}{2}$sinα | B. | S2=$\frac{1}{2}$tanα | C. | S3=α | D. | S4=$\frac{1}{2}$cosα |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com