精英家教网 > 高中数学 > 题目详情
11.已知$0<α<\frac{π}{2}$,$sinα=\frac{4}{5}$,$tan(α-β)=-\frac{1}{3}$,则tanβ=3;$\frac{{sin(2β-\frac{π}{2})•sin(β+π)}}{{\sqrt{2}cos(β+\frac{π}{4})}}$=$\frac{6}{5}$.

分析 由已知利用同角三角函数基本关系式可求cosα,tanα的值,由$tan(α-β)=-\frac{1}{3}$利用两角差的正切函数公式即可解得tanβ的值,利用诱导公式,二倍角的余弦函数公式,同角三角函数基本关系式化简所求即可计算求值.

解答 解:∵$0<α<\frac{π}{2}$,$sinα=\frac{4}{5}$,
∴cos$α=\sqrt{1-si{n}^{2}α}$=$\frac{3}{5}$,tanα=$\frac{sinα}{cosα}$=$\frac{4}{3}$,
∵$tan(α-β)=-\frac{1}{3}$=$\frac{tanα-tanβ}{1+tanαtanβ}$=$\frac{\frac{4}{3}-tanβ}{1+\frac{4}{3}tanβ}$,
∴解得:tanβ=3,
∴$\frac{{sin(2β-\frac{π}{2})•sin(β+π)}}{{\sqrt{2}cos(β+\frac{π}{4})}}$=$\frac{cos2β•sinβ}{cosβ-sinβ}$=$\frac{\frac{co{s}^{2}β-si{n}^{2}β}{co{s}^{2}β+si{n}^{2}β}•sinβ}{cosβ-sinβ}$=$\frac{\frac{1-ta{n}^{2}β}{1+ta{n}^{2}β}•tanβ}{1-tanβ}$=$\frac{\frac{1-9}{1+9}×3}{1-3}$=$\frac{6}{5}$.
故答案为:$3\;,\;\;\frac{6}{5}$.

点评 本题主要考查了两角差的正切函数公式,诱导公式,二倍角的余弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.记min|a,b|为a、b两数的最小值,当正数x,y变化时,令t=min|2x+y,$\frac{2y}{{x}^{2}+2{y}^{2}}$|,则t的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=log3(x-1)的定义域为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知两点A(0,2)、B(3,-1),设向量$\overrightarrow a=\overrightarrow{AB}$,$\overrightarrow{b}$=(1,m),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,那么实数m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xlnx+a.
(1)若函数y=f(x)在x=e处的切线方程为y=2x,求实数a的值;
(2)设m>0,当x∈[m,2m]时,求f(x)的最小值;
(3)求证:${?_n}∈{N_+},{e^{1+\frac{1}{n}}}>{(1+\frac{1}{n})^e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x,y∈R且满足不等式组$\left\{\begin{array}{l}x≥1\\ x+y-4≤0\\ x-y-2≤0\end{array}\right.$,不等式组所表示的平面区域的面积为4,目标函数z=3x+y的最大值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.i为虚数单位,计算$\frac{1-i}{2-i}$=$\frac{3}{5}$-$\frac{1}{5}$i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知一元二次方程(k+1)x2-2(k+7)x+k-5=0有实根.
(1)求k的取值范围;
(2)当k在取值范围内取最大负整数时,若方程两实根为x1,x2,则$\frac{{x}_{2}}{{x}_{1}-1}$+$\frac{{x}_{1}}{{x}_{2}-1}$的值多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,在单位圆O中,∠AOH=α(0<α<$\frac{π}{2}$),若△AOH的面积记为S1,△BOC的面积记为S2,△AOC的面积为S3,扇形AOC的面积记为S4,则(  )
A.S1=$\frac{1}{2}$sinαB.S2=$\frac{1}{2}$tanαC.S3D.S4=$\frac{1}{2}$cosα

查看答案和解析>>

同步练习册答案