精英家教网 > 高中数学 > 题目详情
2.函数y=log3(x-1)的定义域为(1,+∞).

分析 根据函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,则x-1>0,得x>1,
即函数的定义域(1,+∞),
故答案为:(1,+∞).

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=$\frac{5}{3}$.
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足四边形MF1NF2是平行四边形,直线l∥MN,且与C1交于A、B两点,若OA⊥OB,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an},{bn}满足:a1=-1,b1=2,an+1=-bn,bn+1=2an-3bn(n∈N*),则b2015+b2016=-3•22015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在等比数列{an}中,a2=2,且$\frac{1}{a_1}+\frac{1}{a_3}=\frac{5}{4}$,则a1+a3的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=Asin(ωx+φ)+b的图象如图,则f(x)的解析式和S=f(0)+f(1)+f(2)+…+f(2013)+f(2014)+f(2015)+f(2016)的值分别为(  )
A.f(x)=$\frac{1}{2}$sin2πx+1,S=2016B.f(x)=$\frac{1}{2}$sin2πx+1,S=2016$\frac{1}{2}$
C.f(x)=$\frac{1}{2}$sin$\frac{π}{2}$x+1,S=2017$\frac{1}{2}$D.f(x)=$\frac{1}{2}$sin$\frac{π}{2}$x+1,S=2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知复数z满足z(1-i)=2i,其中i为虚数单位,则|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线C1:$\frac{{x}^{2}}{4}$-y2=1,双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,M是双曲线C2一条渐近线上的某一点,且OM⊥MF2,若C1,C2的离心率相同,且S${\;}_{△OM{F}_{2}}$=16,则双曲线C2的实轴长为(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$0<α<\frac{π}{2}$,$sinα=\frac{4}{5}$,$tan(α-β)=-\frac{1}{3}$,则tanβ=3;$\frac{{sin(2β-\frac{π}{2})•sin(β+π)}}{{\sqrt{2}cos(β+\frac{π}{4})}}$=$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)-$\frac{1}{2}$.
(1)求f(x)的单调递增区间;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f($\frac{A}{2}$)=$\frac{\sqrt{3}-1}{2}$,a=1,b+c=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案