12£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£®F2Ò²ÊÇÅ×ÎïÏßC2£ºy2=4xµÄ½¹µã£¬µãMΪC1ÓëC2ÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬ÇÒ|MF2|=$\frac{5}{3}$£®
£¨¢ñ£©ÇóC1µÄ·½³Ì£»
£¨¢ò£©Æ½ÃæÉϵĵãNÂú×ãËıßÐÎMF1NF2ÊÇÆ½ÐÐËıßÐΣ¬Ö±Ïßl¡ÎMN£¬ÇÒÓëC1½»ÓÚA¡¢BÁ½µã£¬ÈôOA¡ÍOB£¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨¢ñ£©ÓÉC2£ºy2=4x£¬µÃF2£¨1£¬0£©£¬ÉèM£¨x1£¬y1£©£¬ÓÉMÔÚC2ÉÏ£¬µÃ${x}_{1}=\frac{2}{3}£¬{y}_{1}=\frac{2\sqrt{6}}{3}$£¬ÔÙÓÉMÔÚC1ÉÏ£¬ÇÒÍÖÔ²C1µÄ°ë½¹¾àc=1£¬ÄÜÇó³öÍÖÔ²C1µÄ·½³Ì£®
£¨¢ò£©ËıßÐÎMF1NF2ÊÇÆ½ÐÐËıßÐΣ¬ÆäÖÐÐÄÎª×ø±êÔ­µãO£¬ÍƵ¼³ölµÄ·½³ÌΪy=$\sqrt{6}$£¨x-m£©£¬ÓÉ$\left\{\begin{array}{l}{3{x}^{2}+4{y}^{2}=12}\\{y=\sqrt{6}£¨x-m£©}\end{array}\right.$£¬µÃ9x2-16mx+8m2-4=0£¬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí¡¢ÏòÁ¿µÄÊýÁ¿»ý¡¢¸ùµÄÅбðʽ£¬ÄÜÇó³öÖ±ÏßlµÄ·½³Ì£®

½â´ð ½â£º£¨¢ñ£©ÓÉC2£ºy2=4x£¬µÃF2£¨1£¬0£©£¬
ÉèM£¨x1£¬y1£©£¬MÔÚC2ÉÏ£¬¡ß|MF2|=$\frac{5}{3}$£¬¡à${x}_{1}+1=\frac{5}{3}$£¬
½âµÃ${x}_{1}=\frac{2}{3}£¬{y}_{1}=\frac{2\sqrt{6}}{3}$£¬
MÔÚC1ÉÏ£¬ÇÒÍÖÔ²C1µÄ°ë½¹¾àc=1£¬
¡à$\left\{\begin{array}{l}{\frac{4}{9{a}^{2}}+\frac{8}{3{b}^{2}}=1}\\{{b}^{2}={a}^{2}-1}\end{array}\right.$£¬ÏûÈ¥b2£¬²¢ÕûÀí£¬µÃ9a4-37a2+4=0£¬
½âµÃa=2£¬»òa=$\frac{1}{3}$£¨Éᣩ£¬
¹ÊÍÖÔ²C1µÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£®
£¨¢ò£©ËıßÐÎMF1NF2ÊÇÆ½ÐÐËıßÐΣ¬ÆäÖÐÐÄÎª×ø±êÔ­µãO£¬
¡ßl¡ÎMN£¬¡àlÓëOMµÄбÂÊÏàͬ£¬
¹ÊlµÄбÂÊk=$\frac{\frac{2\sqrt{6}}{3}}{\frac{2}{3}}$=$\sqrt{6}$£¬
ÔòlµÄ·½³ÌΪy=$\sqrt{6}$£¨x-m£©£¬
ÓÉ$\left\{\begin{array}{l}{3{x}^{2}+4{y}^{2}=12}\\{y=\sqrt{6}£¨x-m£©}\end{array}\right.$£¬ÏûÈ¥y£¬µÃ9x2-16mx+8m2-4=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=\frac{16m}{9}$£¬${x}_{1}{x}_{2}=\frac{8{m}^{2}-4}{9}$£¬
¡ß$\overrightarrow{OA}¡Í\overrightarrow{OB}$£¬¡àx1x2+y1y2=0£¬
x1x2+y1y2=x1x2+6£¨x1-m£©£¨x2-m£©
=7${x}_{1}{x}_{2}-6m£¨{x}_{1}+{x}_{2}£©+6{m}^{2}$
=7¡Á$\frac{8{m}^{2}-4}{9}-6m¡Á\frac{16m}{9}+6{m}^{2}$
=$\frac{1}{9}£¨14{m}^{2}-28£©=0$£¬
½âµÃm=$¡À\sqrt{2}$£¬
´Ëʱ¡÷=£¨16m£©2-4¡Á9£¨8m2-4£©£¾0£¬
¹ÊËùÇóÖ±ÏßlµÄ·½³ÌΪy=$\sqrt{6}x-2\sqrt{3}$»òy=$\sqrt{6}x+2\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌºÍÖ±Ïß·½³ÌµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢ÏòÁ¿µÄÊýÁ¿»ý¡¢¸ùµÄÅбðʽ¡¢ÍÖÔ²ÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Éèz¡ÊC£¬z+2i£¬$\frac{z}{2-i}$¾ùΪʵÊý£®
£¨1£©Çóz£»
£¨2£©Çó¦Ø=z2+3$\overline{z}$-4£¨$\overline{z}$ÊÇzµÄ¹²éÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÍÖÔ²CÓëÔ²C¡ä£º£¨x-2£©2+y2=1ÓÐÇÒ½öÓÐA£¬BÁ½¸ö½»µã£¬ÇÒ½»µã¶¼ÔÚÔ²C¡äµÄ×ó·½£¬ÏཻËùµÃµÄÏÒAB³¤Îª$\frac{2\sqrt{5}}{3}$
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©Èô¹ý£¨1£¬0£©µÄÖ±ÏßÓëÇúÏßC½»ÓÚM£¬NÁ½µã£¬Çó$\overrightarrow{OM}$•$\overrightarrow{ON}$µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÈôÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1Óë$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊ·Ö±ðΪe1£¬e2£¬ÇÒe1+e2=$\sqrt{3}$£¬Ôòe1e2=£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}}{2}$B£®$\frac{3}{4}$C£®$\frac{1}{2}$D£®$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªA¡¢B·Ö±ðÊÇÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×óÓÒ¶¥µã£¬ÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÓÒ½¹µãÓëÅ×ÎïÏßy2=4xµÄ½¹µãFÖØºÏ£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªµãPÊÇÍÖÔ²CÉÏÒìÓÚA¡¢BµÄ¶¯µã£¬Ö±Ïßl¹ýµãAÇÒ´¹Ö±ÓÚxÖᣬÈô¹ýF×÷Ö±ÏßFQ´¹Ö±ÓÚAP£¬²¢½»Ö±ÏßlÓÚµãQ£¬Ö¤Ã÷£ºQ¡¢P¡¢BÈýµã¹²Ïߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÍÖÔ²$E£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$¾­¹ýµã$£¨{2\sqrt{2}£¬2}£©$£¬ÇÒÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬F1£¬F2ÊÇÍÖÔ²EµÄ×ó£¬ÓÒ½¹µã
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÈôµãA£¬BÊÇÍÖÔ²EÉϹØÓÚyÖá¶Ô³ÆÁ½µã£¨A£¬B²»Êdz¤ÖáµÄ¶Ëµã£©£¬µãPÊÇÍÖÔ²EÉÏÒìÓÚA£¬BµÄÒ»µã£¬ÇÒÖ±ÏßPA£¬PB·Ö±ð½»yÖáÓÚµãM£¬N£¬ÇóÖ¤£ºÖ±ÏßMF1ÓëÖ±ÏßNF2µÄ½»µãGÔÚ¶¨Ô²ÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÇÒÍÖÔ²Éϵĵ㵽ÓÒ½¹µãFµÄ×î´ó¾àÀëΪ3
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Éè¹ýµãFµÄÖ±Ïßl½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬¶¨µãG£¨4£¬0£©£¬Çó¡÷ABGÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®¼Çmin|a£¬b|Ϊa¡¢bÁ½ÊýµÄ×îСֵ£¬µ±ÕýÊýx£¬y±ä»¯Ê±£¬Áît=min|2x+y£¬$\frac{2y}{{x}^{2}+2{y}^{2}}$|£¬ÔòtµÄ×î´óֵΪ$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®º¯Êýy=log3£¨x-1£©µÄ¶¨ÒåÓòΪ£¨1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸