3£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÍÖÔ²CÓëÔ²C¡ä£º£¨x-2£©2+y2=1ÓÐÇÒ½öÓÐA£¬BÁ½¸ö½»µã£¬ÇÒ½»µã¶¼ÔÚÔ²C¡äµÄ×ó·½£¬ÏཻËùµÃµÄÏÒAB³¤Îª$\frac{2\sqrt{5}}{3}$
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©Èô¹ý£¨1£¬0£©µÄÖ±ÏßÓëÇúÏßC½»ÓÚM£¬NÁ½µã£¬Çó$\overrightarrow{OM}$•$\overrightarrow{ON}$µÄ×î´óÖµ£®

·ÖÎö £¨1£©ÉèµãA£¨x0£¬y0£©£¬£¨x0£¾0£¬y0£¾0£©£¬ÓÉÒÑÖªÍÆµ¼³ö|C¡äE|=2-x0£¬x0¡Ê£¨1£¬2£©£¬ÓÉÏÒ³¤¹«Ê½£¬µÃ|AE|2+|C¡äE|2=|AC¡ä|2£¬´Ó¶øA£¨$\frac{4}{3}£¬\frac{\sqrt{5}}{3}$£©£¬´úÈëÍÖÔ²£¬ÓÉÍÖÔ²CµÄÀëÐÄÂÊ£¬ÄÜÇó³öÍÖÔ²CµÄ±ê×¼·½³Ì£®
£¨¢ò£©µ±¹ýµã£¨1£¬0£©µÄÖ±ÏßΪy=0ʱ£¬$\overrightarrow{OM}•\overrightarrow{ON}$=-4£¬µ±¹ýµã£¨1£¬0£©µÄÖ±Ïß²»Îªy=0ʱ£¬ÉèΪx=ty£¬ÁªÁ¢$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{x=ty+1}\end{array}\right.$£¬µÃ£¨t2+4£©y2+2ty-3=0£¬ÓɸùÓëϵÊýµÄ¹ØÏµ£¬µÃ$\overrightarrow{OM}•\overrightarrow{ON}$=x1x2+y1y2=-4+$\frac{17}{{t}^{2}+4}$£¬ÓÉ¡÷£¾0ºã³ÉÁ¢£¬ÓÉ´ËÄÜÇó³ö$\overrightarrow{OM}•\overrightarrow{ON}$µÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©Èçͼ£¬ÉèµãA£¨x0£¬y0£©£¬£¨x0£¾0£¬y0£¾0£©
ÏÒÓëxÖáµÄ½»µãΪE£¬Ôò|C¡äE|=2-x0£¬
¡ß½»µã¶¼ÔÚÔ²ÐÄC¡äµÄ×ó·½£¬¡àx0¡Ê£¨1£¬2£©£¬
ÓÉÏÒ³¤¹«Ê½£¬µÃ|AE|2+|C¡äE|2=|AC¡ä|2£¬
¡à£¨$\frac{\sqrt{5}}{3}$£©2+£¨2-x0£©2=12£¬
½âµÃ${x}_{0}=\frac{8}{3}$£¨Éᣩ£¬»ò${x}_{0}=\frac{4}{3}$£®
½«${x}_{0}=\frac{4}{3}$´úÈëÔ²C¡ä£º£¨x-2£©2+y2=1ÖУ¬½âµÃ${y}_{0}=\frac{\sqrt{5}}{3}$£¬ÔòA£¨$\frac{4}{3}£¬\frac{\sqrt{5}}{3}$£©£¬
½«µãA£¨$\frac{4}{3}$£¬$\frac{\sqrt{5}}{3}$£©´úÈëÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬
µÃ$\frac{16}{9{a}^{2}}+\frac{5}{9{b}^{2}}=1$£¬¢Ù
ÉèÍÖÔ²CµÄ°ë½¹¾àΪc£¬ÔòÓÉÍÖÔ²CµÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬µÃ$\frac{c}{a}=\frac{\sqrt{3}}{2}$£¬¢Ú
ÇÒa2=b2+c2£¬¢Û
ÓÉ¢Ù¢Ú¢Û£¬½âµÃa=2£¬b=1£¬c=$\sqrt{3}$£¬
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£®
£¨¢ò£©µ±¹ýµã£¨1£¬0£©µÄÖ±ÏßΪy=0ʱ£¬$\overrightarrow{OM}•\overrightarrow{ON}$=£¨2£¬0£©•£¨-2£¬0£©=-4£¬
µ±¹ýµã£¨1£¬0£©µÄÖ±Ïß²»Îªy=0ʱ£¬ÉèΪx=ty£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{x=ty+1}\end{array}\right.$£¬»¯¼ò£¬µÃ£¨t2+4£©y2+2ty-3=0£¬
ÓɸùÓëϵÊýµÄ¹ØÏµµÃ${y}_{1}+{y}_{2}=-\frac{2t}{{t}^{2}+4}$£¬${y}_{1}{y}_{2}=-\frac{3}{{t}^{2}+4}$£¬
¡à$\overrightarrow{OM}•\overrightarrow{ON}$=x1x2+y1y2=£¨ty1+1£©£¨ty2+1£©+y1y2
=£¨t2+1£©y1y2+t£¨y1+y2£©+1
=£¨t2+1£©•$\frac{-3}{{t}^{2}+4}$+t•$\frac{-2t}{{t}^{2}+4}$+1
=$\frac{-4{t}^{2}+1}{{t}^{2}+4}$=$\frac{-4£¨{t}^{2}+4£©+17}{{t}^{2}+4}$=-4+$\frac{17}{{t}^{2}+4}$£¬
ÓÖÓÉ¡÷=4t2+12£¨t2+4£©=16t2+48£¾0ºã³ÉÁ¢£¬¡àt¡ÊR£¬
¶ÔÓÚÉÏʽ£¬µ±t=0ʱ£¬£¨$\overrightarrow{OM}•\overrightarrow{ON}$£©max=$\frac{1}{4}$£¬
¡à$\overrightarrow{OM}•\overrightarrow{ON}$µÄ×î´óֵΪ$\frac{1}{4}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÏòÁ¿µÄÊýÁ¿»ýµÄ×î´óÖµµÄÇ󷨣¬×¢ÒâÏÒ³¤¹«Ê½¡¢¸ùÓëϵÊýµÄ¹ØÏµµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈôÒ»Ôª¶þ´Î²»µÈʽax2+bx+c£¾0£¨a¡Ù0£©µÄ½â¼¯ÊÇ£¨-$\frac{1}{2}$£¬2£©£¬ÔòÏÂÁв»³ÉÁ¢µÄΪ£¨¡¡¡¡£©
A£®a£¼0B£®a+b+c£¾0C£®b£¼0D£®c£¾0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª$\overrightarrow{a}$=£¨sinx£¬£¨m-$\frac{3}{8}$£©sinx£©£¬$\overrightarrow{b}$=£¨sin3x£¬8sinx£©ÇÒf£¨x£©=$\overrightarrow{a}•\overrightarrow{b}$£¬Çóº¯Êýy=f£¨x£©µÄ×î´óÖµg£¨m£©£¬²¢½â²»µÈʽg£¨m£©£¼5-|m-1|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÉèË«ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊe=2£¬¾­¹ýË«ÇúÏßµÄÓÒ½¹µãFÇÒбÂÊΪ$\frac{\sqrt{15}}{3}$µÄÖ±Ïß½»Ë«ÇúÏßÓÚA£¬BÁ½µã£¬Èô|AB|=12£¬Çó´ËË«ÇúÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®½¹µã×ø±ê£¨-5£¬0£©£¬ÊµÖ᳤Ϊ6£¬ÇóË«ÇúÏß±ê×¼·½³Ì²¢Çó´ËË«ÇúÏß½¥½üÏß·½³Ì¼°ÀëÐÄÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÍÖÔ²C1£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©£®Ë«ÇúÏßC2£º$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1µÄ½¥½üÏß·½³ÌΪx$¡À\sqrt{3}$y=0£¬ÔòC1ÓëC2µÄÀëÐÄÂÊÖ®»ýΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{15}}}{4}$B£®$\frac{{\sqrt{3}}}{2}$C£®$\frac{{\sqrt{6}}}{5}$D£®$\frac{{2\sqrt{2}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ½¹¾àΪ4£¬ÉèÓÒ½¹µãΪF£¬¹ýÔ­µãOµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Ïß¶ÎAFµÄÖеãΪM£¬Ïß¶ÎBFµÄÖеãΪN£¬ÇÒ$\overrightarrow{OM}$•$\overrightarrow{ON}$=-$\frac{1}{4}$£®
£¨¢ñ£© ÈôÀëÐÄÂÊe=$\frac{1}{2}$£¬ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£© ÇóÍÖÔ²CµÄ³¤Ö᳤µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£®F2Ò²ÊÇÅ×ÎïÏßC2£ºy2=4xµÄ½¹µã£¬µãMΪC1ÓëC2ÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬ÇÒ|MF2|=$\frac{5}{3}$£®
£¨¢ñ£©ÇóC1µÄ·½³Ì£»
£¨¢ò£©Æ½ÃæÉϵĵãNÂú×ãËıßÐÎMF1NF2ÊÇÆ½ÐÐËıßÐΣ¬Ö±Ïßl¡ÎMN£¬ÇÒÓëC1½»ÓÚA¡¢BÁ½µã£¬ÈôOA¡ÍOB£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÊýÁÐ{an}£¬{bn}Âú×㣺a1=-1£¬b1=2£¬an+1=-bn£¬bn+1=2an-3bn£¨n¡ÊN*£©£¬Ôòb2015+b2016=-3•22015£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸