精英家教网 > 高中数学 > 题目详情
15.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距为4,设右焦点为F,过原点O的直线l与椭圆C交于A,B两点,线段AF的中点为M,线段BF的中点为N,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-$\frac{1}{4}$.
(Ⅰ) 若离心率e=$\frac{1}{2}$,求椭圆C的方程;
(Ⅱ) 求椭圆C的长轴长的取值范围.

分析 (Ⅰ)由椭圆的焦距为4,离心率e=$\frac{1}{2}$,列出方程组,求出a,b,由此能求出椭圆C的方程.
(2)设$A({x_0},{y_0}),则B(-{x_0},-{y_0}),M(\frac{{{x_0}+2}}{2},\frac{y_0}{2}),N(\frac{{2-{x_0}}}{2},\frac{{-{y_0}}}{2})$,推导出$x_0^2+y_0^2=5$,设l方程为y=kx,和椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{{{a^2}-4}}=1$联立,得到${{x}_{0}}^{2}∈[0,{a}^{2}]$,由此能求出长轴长的取值范围.

解答 解:(Ⅰ)∵椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距为4,离心率e=$\frac{1}{2}$,
∴$\left\{\begin{array}{l}{2c=4}\\{e=\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=4,c=2,b=$\sqrt{16-4}$=2$\sqrt{3}$.
∴椭圆C的方程$\frac{x^2}{16}+\frac{y^2}{12}=1$.
(2)∵右焦点为F(2,0),过原点O的直线l与椭圆C交于A,B两点,
线段AF的中点为M,线段BF的中点为N,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=-$\frac{1}{4}$.
∴设$A({x_0},{y_0}),则B(-{x_0},-{y_0}),M(\frac{{{x_0}+2}}{2},\frac{y_0}{2}),N(\frac{{2-{x_0}}}{2},\frac{{-{y_0}}}{2})$,
$O\vec M•O\vec N=1-\frac{1}{4}(x_0^2+y_0^2)=-\frac{1}{4}$,则$x_0^2+y_0^2=5$,
设l方程为y=kx,和椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{{{a^2}-4}}=1$联立,
消元整理得${x_0}^2=\frac{{{a^2}({a^2}-4)}}{{{a^2}+{a^2}{k^2}-4}}∈[{0,{a^2}}]$,
∴当${{x}_{0}}^{2}$=0时,${{y}_{0}}^{2}$=5,a2-4=5,解得a=3;当${{x}_{0}}^{2}=5$时,${{y}_{0}}^{2}=0$,a=$\sqrt{5}$.
∴长轴长的取值范围是$[{2\sqrt{5},6}]$.

点评 本题考查椭圆方程的求法,考查椭圆的长轴长的取值范围的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知tanα=3,求$\frac{si{n}^{2}(π-α)+4sinαcosα}{2co{s}^{2}(π+α)+3co{s}^{2}(\frac{π}{2}-α)}$ 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点.
(1)当a=2b,点P在双曲线上,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=2时,求双曲线方程.
(2)已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1具有如下性质,若x=t交双曲线于P,Q,A1,A2为双曲线顶点,则A1P,A2Q交点的轨迹是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1.
试对椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1写出具有类似特征的性质,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,椭圆C与圆C′:(x-2)2+y2=1有且仅有A,B两个交点,且交点都在圆C′的左方,相交所得的弦AB长为$\frac{2\sqrt{5}}{3}$
(1)求椭圆C的标准方程;
(2)若过(1,0)的直线与曲线C交于M,N两点,求$\overrightarrow{OM}$•$\overrightarrow{ON}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1(-c,0),F2(c,0),过F2作垂直于x轴的直线l1交椭圆C于A,B两点,且满足|AF1|=7|AF2|
(Ⅰ)求椭圆C的离心率;
(Ⅱ)过F1作斜率为1的直线l2交C于M,N两点.O为坐标原点,若△OMN的面积为$\frac{2\sqrt{6}}{5}$,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1与$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率分别为e1,e2,且e1+e2=$\sqrt{3}$,则e1e2=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A、B分别是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右顶点,离心率为$\frac{1}{2}$,右焦点与抛物线y2=4x的焦点F重合.
(1)求椭圆C的方程;
(2)已知点P是椭圆C上异于A、B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q,证明:Q、P、B三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且椭圆上的点到右焦点F的最大距离为3
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F的直线l交椭圆C于A,B两点,定点G(4,0),求△ABG面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,在边长为2的正方形ABCD中,点Q边CD上一个动点,$\overrightarrow{CQ}$=λ$\overrightarrow{QD}$,点P为线段BQ(含端点)上一个动点,若λ=1,则$\overrightarrow{PA}$•$\overrightarrow{PD}$的取值范围为[$\frac{4}{5}$,4].

查看答案和解析>>

同步练习册答案