分析 (1)设z=a+bi,其中a,b∈R,由z+2i,$\frac{z}{2-i}$均为实数可得ab的方程组,解方程组可得;
(2)把z和$\overline{z}$代入要求的式子,由复数的混合运算化简可得.
解答 解:(1)设z=a+bi,其中a,b∈R,
∴z+2i=a+(b+2)i,$\frac{z}{2-i}$=$\frac{a+bi}{2-i}$=$\frac{1}{5}$(a+bi)(2+i)=$\frac{1}{5}$[(2a-b)+(a+2b)i],
由z+2i,$\frac{z}{2-i}$均为实数可得b+2=0且a+2b=0,解得a=4且b=-2
∴z=4-2i;
(2)∴ω=z2+3$\overline{z}$-4=(4-2i)2+3(4+2i)-4
=12-16i+12+6i-4=20-10i
点评 本题考查复数的代数形式的混合运算,涉及复数的基本概念和共轭复数,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | a<0 | B. | a+b+c>0 | C. | b<0 | D. | c>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -$\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com