| A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | -$\frac{3}{4}$ | D. | -$\frac{4}{3}$ |
分析 利用同角三角的基本关系求得cosα的值,可得tanα的值,从而求得tanβ的值,再利用二倍角的正切公式求得tan2β的值.
解答 解:∵α为锐角,3sinα=tanα=$\sqrt{2}$tanβ,∴cosα=$\frac{1}{3}$,∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{2\sqrt{2}}{3}$,∴tanα=$\frac{sinα}{cosα}$=2$\sqrt{2}$,
∴tanβ=$\frac{\sqrt{2}}{2}$tanα=2,∴tan2β=$\frac{2tanβ}{{1-tan}^{2}β}$=-$\frac{4}{3}$,
故选:D.
点评 本题主要考查同角三角的基本关系,二倍角的正切公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | 4 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1 | D. | x2-$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要 | B. | 必要不充分 | C. | 充要 | D. | 非充分非必要 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com