精英家教网 > 高中数学 > 题目详情
1.已知f(x)=$\frac{3x}{x+1}$,数列满足an+1=f(an),a1=$\frac{1}{2}$,则an=$\frac{2×{3}^{n-1}}{3+{3}^{n-1}}$..

分析 把数列递推式变形,可得数列数列{$\frac{1}{{a}_{n}}$-$\frac{1}{2}$}是以$\frac{3}{2}$为首项,以$\frac{1}{3}$为公比的等比数列,求出等比数列的通项公式后可得an

解答 解:∵f(x)=$\frac{3x}{x+1}$,数列满足an+1=f(an),
∴an+1=$\frac{3{a}_{n}}{{a}_{n}+1}$,
∴$\frac{1}{{a}_{n+1}}$=$\frac{{a}_{n}+1}{3{a}_{n}}$,
∴$\frac{1}{{a}_{n+1}}$=$\frac{{a}_{n}+1}{3{a}_{n}}$=$\frac{1}{3}$+$\frac{1}{3{a}_{n}}$,
即$\frac{1}{{a}_{n+1}}$-$\frac{1}{2}$=$\frac{1}{3}$($\frac{1}{{a}_{n}}$-$\frac{1}{2}$),
∵a1=$\frac{1}{2}$,
∴$\frac{1}{{a}_{1}}$-$\frac{1}{2}$=$\frac{3}{2}$,
∴数列{$\frac{1}{{a}_{n}}$-$\frac{1}{2}$}是以$\frac{3}{2}$为首项,以$\frac{1}{3}$为公比的等比数列,
∴$\frac{1}{{a}_{n}}$-$\frac{1}{2}$=$\frac{3}{2}$($\frac{1}{3}$)n-1
∴$\frac{1}{{a}_{n}}$=$\frac{1}{2}$+$\frac{3}{2}$($\frac{1}{3}$)n-1
∴an=$\frac{2×{3}^{n-1}}{3+{3}^{n-1}}$,n∈N+

点评 本题考查数列递推式,考查了等比关系的确定,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某师范院校志愿者协会有10名同学,成员构成如表,其中表中部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为“中文专业”的概率为$\frac{1}{5}$.
专业
性别
中文英语数学体育
m1n1
1111
现从这10名同学中随机选取3名同学参加社会公益活动(每位同学被选到的可能性相同)
(Ⅰ)求m,n的值;
(Ⅱ)求选出的3名同学恰为专业互不相同的概率.
(Ⅲ)设ξ为选出的3名同学中“女生”的人数,求随机变量ξ的分布列及其数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设数列{an}的前n项和为Sn,且an=2-2Sn,(n∈N*),则数列{an}的通项公式an等于(  )
A.3nB.$\frac{2}{{3}^{n}}$C.$\frac{1}{{3}^{n}}$D.3n-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:${C}_{200}^{198}$+${C}_{200}^{196}$+2${C}_{200}^{197}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$.求作向量$\overrightarrow{a}$+$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等腰直角△ABC的直角顶点为B,两条直角边长都为1,点P为三角形所在平面内的一点,若$\overrightarrow{AP}$=$λ\overrightarrow{AB}$+$μ\overrightarrow{AC}$,且|$\overrightarrow{AP}$|=1,则λ的取值范围为(  )
A.[-1,$\sqrt{2}$]B.[-$\sqrt{2}$,$\sqrt{2}$]C.[-$\sqrt{2}$,1]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的最值并求出最大值和最小值时x的集合.
(1)y=sinx+$\sqrt{3}$cosx;
(2)y=sin2x+2sinxcosx+3cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,角A,B,C的对边分别是a,b,c,已知asinA+bsinB-csinC=$\frac{6\sqrt{7}}{7}$asinBsinC,a=3,b=2,则c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若复数z满足z(1-i)=|1-i|+i,则z的实部为(  )
A.$\frac{\sqrt{2}-1}{2}$B.$\sqrt{2}$-1C.1D.$\frac{\sqrt{2}+1}{2}$

查看答案和解析>>

同步练习册答案