11£®Ä³Ê¦·¶ÔºÐ£Ö¾Ô¸ÕßЭ»áÓÐ10Ãûͬѧ£¬³ÉÔ±¹¹³ÉÈç±í£¬ÆäÖбíÖв¿·ÖÊý¾Ý²»Çå³þ£¬Ö»ÖªµÀ´ÓÕâ10ÃûͬѧÖÐËæ»ú³éȡһ룬³éµ½¸ÃÃûͬѧΪ¡°ÖÐÎÄרҵ¡±µÄ¸ÅÂÊΪ$\frac{1}{5}$£®
רҵ
ÐÔ±ð
ÖÐÎÄÓ¢ÓïÊýѧÌåÓý
ÄÐm1n1
Ů1111
ÏÖ´ÓÕâ10ÃûͬѧÖÐËæ»úѡȡ3Ãûͬѧ²Î¼ÓÉç»á¹«Òæ»î¶¯£¨Ã¿Î»Í¬Ñ§±»Ñ¡µ½µÄ¿ÉÄÜÐÔÏàͬ£©
£¨¢ñ£©Çóm£¬nµÄÖµ£»
£¨¢ò£©ÇóÑ¡³öµÄ3ÃûͬѧǡΪרҵ»¥²»ÏàͬµÄ¸ÅÂÊ£®
£¨¢ó£©Éè¦ÎΪѡ³öµÄ3ÃûͬѧÖС°Å®Éú¡±µÄÈËÊý£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼Áм°ÆäÊýѧÆÚÍûE¦Î£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£¬$\frac{1+m}{10}=\frac{1}{5}$£®ÓÉ´ËÄÜÇó³öm£¬n£®
£¨¢ò£©ÏÈÇó³ö»ù±¾Ê¼þ×ÜÊý£¬ÔÙÇó³öÑ¡³öµÄ3ÃûͬѧǡΪרҵ»¥²»Ïàͬ£¬°üº¬µÄ»ù±¾Ê¼þ¸öÊý£¬ÓÉ´ËÄÜÇó³öÑ¡³öµÄ3ÃûͬѧǡΪרҵ»¥²»ÏàͬµÄ¸ÅÂÊ£®
£¨¢ó£©ÓÉÒÑÖªµÃ¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍE¦Î£®

½â´ð ½â£º£¨¢ñ£©ÉèʼþA£º´Ó10λѧÉúÖÐËæ»ú³éȡһ룬³éµ½¸ÃÃûͬѧΪ¡°ÖÐÎÄרҵ¡±£®ÓÉÌâÒâ¿ÉÖª£¬¡°ÖÐÎÄרҵ¡±µÄѧÉú¹²ÓУ¨1+m£©ÈË£®
ÔòP£¨A£©=$\frac{1+m}{10}=\frac{1}{5}$£®½âµÃm=1£¬
¡àn=10-2-2-2-1=3£®
£¨¢ò£©´ÓÕâ10ÃûͬѧÖÐËæ»úѡȡ3Ãûͬѧ²Î¼ÓÉç»á¹«Òæ»î¶¯£¨Ã¿Î»Í¬Ñ§±»Ñ¡µ½µÄ¿ÉÄÜÐÔÏàͬ£©£¬
»ù±¾Ê¼þ×ÜÊý$n={C}_{10}^{3}$=120£¬
Ñ¡³öµÄ3ÃûͬѧǡΪרҵ»¥²»Ïàͬ£¬°üº¬µÄ»ù±¾Ê¼þ¸öÊý£º
m=${C}_{2}^{1}{C}_{2}^{1}{C}_{4}^{1}$+${C}_{2}^{1}{C}_{2}^{1}{C}_{2}^{1}$+${C}_{2}^{1}{C}_{4}^{1}{C}_{2}^{1}$+${C}_{2}^{1}{C}_{4}^{1}{C}_{2}^{1}$=56£¬
¡àÑ¡³öµÄ3ÃûͬѧǡΪרҵ»¥²»ÏàͬµÄ¸ÅÂÊp=$\frac{m}{n}$=$\frac{56}{120}$=$\frac{7}{15}$£®
£¨¢ó£©ÓÉÒÑÖªµÃ¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬
P£¨¦Î=0£©=$\frac{{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{20}{120}$£¬
P£¨¦Î=1£©=$\frac{{C}_{4}^{1}{C}_{6}^{2}}{{C}_{10}^{3}}$=$\frac{60}{120}$£¬
P£¨¦Î=2£©=$\frac{{C}_{4}^{2}{C}_{6}^{1}}{{C}_{10}^{3}}$=$\frac{36}{120}$£¬
P£¨¦Î=3£©=$\frac{{C}_{4}^{3}}{{C}_{10}^{3}}$=$\frac{4}{120}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º

 ¦Î 0 1 2 3
 P $\frac{20}{120}$ $\frac{60}{20}$ $\frac{36}{120}$ $\frac{4}{120}$
E¦Î=$0¡Á\frac{20}{120}+1¡Á\frac{60}{120}+2¡Á\frac{36}{120}+3¡Á\frac{4}{120}$=$\frac{6}{5}$£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÒª²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÅÅÁÐ×éºÏ֪ʶµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªº¯Êýy=f£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬µ±x¡Ê£¨-¡Þ£¬0]ʱ£¬f£¨x£©Îª¼õº¯Êý£¬Èôa=f£¨20.3£©£¬$b=f£¨{{{log}_{\frac{1}{2}}}4}£©$£¬c=f£¨log25£©£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
A£®a£¾b£¾cB£®c£¾b£¾aC£®c£¾a£¾bD£®a£¾c£¾b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÃüÌâ¡°?x£¾0£¬x2£¾0¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
A£®?x£¾0£¬x2£¼0B£®?x£¾0£¬x2¡Ü0C£®$?{x_0}£¾0£¬{x_0}^2£¼0$D£®$?{x_0}£¾0£¬{x_0}^2¡Ü0$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÇóÊýÁÐ5£¬55£¬555£¬¡­µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÊýÁÐ{an}£¬a1=1£¬an+1=£¨1+$\frac{1}{n}$£©an+$\frac{n+1}{{2}^{n}}$£¬
£¨1£©Éèbn=$\frac{{a}_{n}}{n}$£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©Çóan£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®f¡ä£¨x£©£¾0ÔÚ£¨a£¬b£©ÉϳÉÁ¢ÊÇf£¨x£©ÔÚ£¨a£¬b£©Éϵ¥µ÷µÝÔöµÄ³ä·Ö²»±ØÒªÌõ¼þÌõ¼þ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÇúÏß·½³Ì$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1£¬Çóµã£¨2$\sqrt{3}$£¬$\frac{3}{2}$£©´¦µÄÇÐÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®º¯Êýy=$\frac{2x-1}{\sqrt{3x+5}}$µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
A£®{x|x¡Ý-$\frac{5}{3}$}B£®{x|x¡Ý-$\frac{5}{3}$ÇÒx¡Ù$\frac{1}{2}$}C£®{x|x£¾-$\frac{5}{3}$}D£®{x|x¡Ü-$\frac{5}{3}$}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªf£¨x£©=$\frac{3x}{x+1}$£¬ÊýÁÐÂú×ãan+1=f£¨an£©£¬a1=$\frac{1}{2}$£¬Ôòan=$\frac{2¡Á{3}^{n-1}}{3+{3}^{n-1}}$£®£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸