精英家教网 > 高中数学 > 题目详情
4.若a=$\frac{l{n}^{2}6}{4}$,b=ln2×ln3,c=$\frac{l{n}^{2}2π}{4}$,则a,b,c的大小关系是b<a<c.

分析 先对b利用基本不等式可比较b与a的大小,然后根据对数函数的单调性可判定a与c的大小,即可的答案.

解答 解:∵b=ln2×ln3<$(\frac{ln2+ln3}{2})^{2}$=$\frac{l{n}^{2}6}{4}$=a,
∵1<ln6<ln2π
∴a=$\frac{l{n}^{2}6}{4}$<$\frac{l{n}^{2}2π}{4}$=c
∴b<a<c
故答案为:b<a<c.

点评 本题考查不等式比较大小,涉及基本不等式和对数函数的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知正实数a,x,y,满足a≠1且ax•a4y=a,则x•y的最大值为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点.求直线D1E与平面A1D1B所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列1,1,2,3,5,8,x,21,34,45中,x等于13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.从某班的科技创新比赛结果中任抽取9名学生的成绩,其分布如茎叶图所示:
(1)求这9名学生的成绩的样本平均数$\overline{x}$和样本方差s2(结果取整数);
(2)从该9个学生的成绩高于70的成绩中,任抽取2名学生成绩,求这2名学生的成绩分别分布于[70,80),[90,100)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点F($\sqrt{2}$,0)其短轴上的一个端点到F的距离为$\sqrt{3}$
(1)求椭圆C的;离心率及其标准方程
(2)点P(x0,y0)是圆G:x2+y2=4上的动点,过点P作椭圆C的切线l1,l2交圆G于点M,N,求证:线段MN的长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆O:x2+y2=16,点P(1,0),过P点交圆O于A,B两点.
(1)若以AB为直径的圆经过点C(4,2),求直线l的方程;
(2)若2|AP|=3|BP|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a为实常数,y=f(x)是定义在R上的奇函数,当x>0时,f(x)=4x+$\frac{1}{x}$+3,则对于y=f(x)在x<0时,下列说法正确的是(  )
A.有最大值7B.有最大值-7C.有最小值7D.有最小值-7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为,F1和F2,上顶点为B,BF2,延长线交椭圆于点A,△ABF的周长为8,且$\overrightarrow{B{F_1}}•\overrightarrow{BA}$=0.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l⊥AB且与椭圆C相交于两点P,Q,求|PQ|的最大值.

查看答案和解析>>

同步练习册答案