精英家教网 > 高中数学 > 题目详情
20.如图,在矩形ABCD中,已知AD=1.5,AB=a(a>1.5),E,F,G,H分别是边AD,AB,BC,CD上的动点,且满足AE=AF=CG=CH.若AE=x,当x变化时.
(1)求四边形EFGH的面积S关于x的函数解析式,写出其定义域.
(2)当x取何值时,S有最大值,并求出其最大值.

分析 (1)设AE=x,四边形EFGH的面积为S,则S=1.5a-x2-(1.5-x)(a-x),x∈(0,1.5].
(2)化简并配方,可得函数的对称轴,从而分类讨论区间和对称轴的关系,可求函数的最大值.

解答 解:设AE=x,四边形EFGH的面积为S,
则S=1.5a-x2-(1.5-x)(a-x)
=-2x2+(a+1.5)x
=-2(x-$\frac{a+1.5}{4}$)2+$\frac{(a+1.5)^{2}}{8}$,x∈(0,1.5],
(1)若$\frac{a+1.5}{4}$≤1.5,即1.5<a≤4.5,
则当x=$\frac{a+1.5}{4}$时,S取得最大值是Smax=$\frac{(a+1.5)^{2}}{8}$;
(2)若$\frac{a+1.5}{4}$>1.5,即a>4.5,
函数S=-2x2+(a+1.5)x在区间(0,1.5]上是增函数,
则当x=1.5时,S取得最大值是Smax=1.5a-2,25.
综上可得EFGH的面积的最大值为$\left\{\begin{array}{l}{\frac{(a+1.5)^{2}}{8},1.5<a≤4.5}\\{1.5a-2.25,a>4.5}\end{array}\right.$.

点评 本题以实际问题为载体,考查二次函数模型的构建,考查二次函数在闭区间上的最值讨论,解题的关键是针对函数的定义域,结合函数的对称轴分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设f(x)的定义域为[-3,3],且f(x)是奇函数,当x∈[0,3]时,f(x)=x(1-3x).
(1)求当x∈[-3,0)时,f(x)的解析式;
(2)解不等式f(x)<-8x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合A={1,2},则下列正确的是(  )
A.1∈AB.1∉AC.{1}∈AD.1⊆A

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=${log_2}(4-{x^2})$的定义域为(-2,2),值域为(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)=xlog2(x+a)的图象过点(1,1).
(1)求实数a的值,并判断函数f(x)的奇偶性;
(2)若f(x)≥t在[1,+∞)上恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知关于x的不等式ax2+2x+b>0(a≠0)的解集是{x|x≠-$\frac{1}{a}$,x∈R},且a>b,则$\frac{{a}^{2}+{b}^{2}}{a-b}$的最小值是(  )
A.2$\sqrt{2}$B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2sin2x+sin2x-1,x∈R.
(1)求f(x)的最小正周期;
(2)f(x)的最大值及取得最大值时x的集合;
(3)求f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若关于x的不等式x2+|x+a|<2至少有一个正数解,则实数a的取值范围是(-$\frac{9}{4}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若1<x1<x2<3,则(  )
A.x1lnx2<x2lnx1B.x1lnx2>x2lnx1
C.x1e${\;}^{{x}_{2}}$<x2e${\;}^{{x}_{1}}$D.x1e${\;}^{{x}_{2}}$>x2e${\;}^{{x}_{1}}$

查看答案和解析>>

同步练习册答案