精英家教网 > 高中数学 > 题目详情
12.如果函数f(x)=cos(ωx+$\frac{π}{4}$)(ω>0)的相邻两个对称中心之间的距离为$\frac{π}{6}$,则ω=(  )
A.3B.6C.12D.24

分析 利用余弦函数的图象的对称性、余弦函数的周期性,求得ω的值.

解答 解:∵函数f(x)=cos(ωx+$\frac{π}{4}$)(ω>0)的相邻两个对称中心之间的距离为$\frac{π}{6}$,
∴$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=$\frac{π}{6}$,∴ω=6
故选:B.

点评 本题主要考查余弦函数的图象的对称性、余弦函数的周期性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若x>3,则函数$f(x)=x+\frac{4}{x-3}$取得最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线y=ex,y=e-x和直线x=1围成的图形面积是(  )
A.e+$\frac{1}{e}$-2B.e-$\frac{1}{e}$+2C.e+$\frac{1}{e}$D.e-$\frac{1}{e}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+$…$+{a_7}{x^7}$,则a0+a1+a2+…+a7=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)的定义域为R,f′(x)>3恒成立,f(1)=9,则f(x)>3x+6解集为(  )
A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(1.+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来; 若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为$\frac{11}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在区间[-3,2]上随机取一个数x,则事件“1≤($\frac{1}{2}$)x≤4”发生的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知角α的终边过点$P({tan\frac{3π}{4},2})$,则cosα的值为-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设的内角A,B,C所对的边分别为a,b,c,且$C=\frac{π}{6}$,a+b=12,面积的最大值为9.

查看答案和解析>>

同步练习册答案